Robert J. Matthys
- Published in print:
- 2004
- Published Online:
- January 2010
- ISBN:
- 9780198529712
- eISBN:
- 9780191712791
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198529712.001.0001
- Subject:
- Physics, History of Physics
The Shortt clock, made in the 1920s, is the most famous accurate clock pendulum ever known, having an accuracy of one second per year when kept at nearly constant temperature. Almost all of a ...
More
The Shortt clock, made in the 1920s, is the most famous accurate clock pendulum ever known, having an accuracy of one second per year when kept at nearly constant temperature. Almost all of a pendulum clock's accuracy resides in its pendulum. If the pendulum is accurate, the clock will be accurate. This book describes many scientific aspects of pendulum design and operation in simple terms with experimental data, and little mathematics. It has been written, looking at all the different parts and aspects of the pendulum in great detail, chapter by chapter, reflecting the degree of attention necessary for making a pendulum run accurately. The topics covered include the dimensional stability of different pendulum materials, good and poor suspension spring designs, the design of mechanical joints and clamps, effect of quartz on accuracy, temperature compensation, air drag of different bob shapes and making a sinusoidal electromagnetic drive. One whole chapter is devoted to simple ways of improving the accuracy of ordinary low-cost pendulum clocks, which have a different construction compared to the more expensive designs of substantially well-made ones. This book will prove invaluable to anyone who wants to know how to make a more accurate pendulum or pendulum clock.Less
The Shortt clock, made in the 1920s, is the most famous accurate clock pendulum ever known, having an accuracy of one second per year when kept at nearly constant temperature. Almost all of a pendulum clock's accuracy resides in its pendulum. If the pendulum is accurate, the clock will be accurate. This book describes many scientific aspects of pendulum design and operation in simple terms with experimental data, and little mathematics. It has been written, looking at all the different parts and aspects of the pendulum in great detail, chapter by chapter, reflecting the degree of attention necessary for making a pendulum run accurately. The topics covered include the dimensional stability of different pendulum materials, good and poor suspension spring designs, the design of mechanical joints and clamps, effect of quartz on accuracy, temperature compensation, air drag of different bob shapes and making a sinusoidal electromagnetic drive. One whole chapter is devoted to simple ways of improving the accuracy of ordinary low-cost pendulum clocks, which have a different construction compared to the more expensive designs of substantially well-made ones. This book will prove invaluable to anyone who wants to know how to make a more accurate pendulum or pendulum clock.
Brian G. Cox
- Published in print:
- 2013
- Published Online:
- May 2013
- ISBN:
- 9780199670512
- eISBN:
- 9780199670512
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199670512.001.0001
- Subject:
- Physics, Condensed Matter Physics / Materials
Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base ...
More
Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases, and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter-ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid–base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvent are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low-polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than twenty orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid–base equilibria and salt formation is described.Less
Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases, and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter-ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented. Fundamental background material is provided in the initial chapters: quantitative aspects of acid–base equilibria, including definitions and relationships between solution pH and species distribution; the influence of molecular structure on acid strengths; and acidity in aqueous solution. Solvent properties are reviewed, along with the magnitude of the interaction energies of solvent molecules with (especially) ions; the ability of solvents to participate in hydrogen bonding and to accept or donate electron pairs is seen to be crucial. Experimental methods for determining dissociation constants are described in detail. In the remaining chapters, dissociation constants of a wide range of acids in three distinct classes of solvent are discussed: protic solvents, such as alcohols, which are strong hydrogen-bond donors; basic, polar aprotic solvents, such as dimethylformamide; and low-basicity and low-polarity solvents, such as acetonitrile and tetrahydrofuran. Dissociation constants of individual acids vary over more than twenty orders of magnitude among the solvents, and there is a strong differentiation between the response of neutral and charged acids to solvent change. Ion-pairing and hydrogen-bonding equilibria, such as between phenol and phenoxide ions, play an increasingly important role as the solvent polarity decreases, and their influence on acid–base equilibria and salt formation is described.
Andrew Briggs and Oleg Kolosov
- Published in print:
- 2009
- Published Online:
- February 2010
- ISBN:
- 9780199232734
- eISBN:
- 9780191716355
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199232734.001.0001
- Subject:
- Physics, Condensed Matter Physics / Materials
Acoustic microscopy enables you to image and measure the elastic properties of materials with the resolution of a good microscope. By using frequencies in the microwave range, it is possible to make ...
More
Acoustic microscopy enables you to image and measure the elastic properties of materials with the resolution of a good microscope. By using frequencies in the microwave range, it is possible to make the acoustic wavelength comparable with the wavelength of light, and hence to achieve a resolution comparable with an optical microscope. The contrast gives information about the elastic properties and structure of the sample. Since acoustic waves can propagate in materials, acoustic microscopy can be used for interior imaging, with high sensitivity to defects such as delaminations. Solids can support both longitudinal and transverse acoustic waves. At surfaces a combination of the two known as Rayleigh waves can propagate, and in many circumstances these dominate the contrast in acoustic microscopy. Contrast theory accounts for the variation of signal with defocus, V(z). Acoustic microscopy can image and measure properties such as anisotropy and features such as surface boundaries and cracks. A scanning probe microscope can be used to detect ultrasonic vibration of a surface with resolution in the nanometre range, thus beating the diffraction limit by operating in the extreme near‐field. This 2nd edition of Acoustic Microscopy has a major new chapter on the technique and applications of acoustically exited probe microscopy.Less
Acoustic microscopy enables you to image and measure the elastic properties of materials with the resolution of a good microscope. By using frequencies in the microwave range, it is possible to make the acoustic wavelength comparable with the wavelength of light, and hence to achieve a resolution comparable with an optical microscope. The contrast gives information about the elastic properties and structure of the sample. Since acoustic waves can propagate in materials, acoustic microscopy can be used for interior imaging, with high sensitivity to defects such as delaminations. Solids can support both longitudinal and transverse acoustic waves. At surfaces a combination of the two known as Rayleigh waves can propagate, and in many circumstances these dominate the contrast in acoustic microscopy. Contrast theory accounts for the variation of signal with defocus, V(z). Acoustic microscopy can image and measure properties such as anisotropy and features such as surface boundaries and cracks. A scanning probe microscope can be used to detect ultrasonic vibration of a surface with resolution in the nanometre range, thus beating the diffraction limit by operating in the extreme near‐field. This 2nd edition of Acoustic Microscopy has a major new chapter on the technique and applications of acoustically exited probe microscopy.
Éric Blayo, Marc Bocquet, Emmanuel Cosme, and Leticia F. Cugliandolo (eds)
- Published in print:
- 2014
- Published Online:
- March 2015
- ISBN:
- 9780198723844
- eISBN:
- 9780191791185
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198723844.001.0001
- Subject:
- Physics, Geophysics, Atmospheric and Environmental Physics
This book gathers notes from lectures and seminars given during a three-week school on theoretical and applied data assimilation held in Les Houches in 2012. Data assimilation aims at determining as ...
More
This book gathers notes from lectures and seminars given during a three-week school on theoretical and applied data assimilation held in Les Houches in 2012. Data assimilation aims at determining as accurately as possible the state of a dynamical system by combining heterogeneous sources of information in an optimal way. Generally speaking, the mathematical methods of data assimilation describe algorithms for forming optimal combinations of observations of a system, a numerical model that describes its evolution, and appropriate prior information. Data assimilation has a long history of application to high-dimensional geophysical systems dating back to the 1960s, with application to the estimation of initial conditions for weather forecasts. It has become a major component of numerical forecasting systems in geophysics, and an intensive field of research, with numerous additional applications in oceanography and atmospheric chemistry, with extensions to other geophysical sciences. The physical complexity and the high dimensionality of geophysical systems have led the community of geophysics to make significant contributions to the fundamental theory of data assimilation. This book is composed of a series of main lectures, presenting the fundamentals of four-dimensional variational data assimilation, the Kalman filter, smoothers, and the information theory background required to understand and evaluate the role of observations; a series of specialized lectures, addressing various aspects of data assimilation in detail, from the most recent developments in the theory to the specificities of various thematic applications.Less
This book gathers notes from lectures and seminars given during a three-week school on theoretical and applied data assimilation held in Les Houches in 2012. Data assimilation aims at determining as accurately as possible the state of a dynamical system by combining heterogeneous sources of information in an optimal way. Generally speaking, the mathematical methods of data assimilation describe algorithms for forming optimal combinations of observations of a system, a numerical model that describes its evolution, and appropriate prior information. Data assimilation has a long history of application to high-dimensional geophysical systems dating back to the 1960s, with application to the estimation of initial conditions for weather forecasts. It has become a major component of numerical forecasting systems in geophysics, and an intensive field of research, with numerous additional applications in oceanography and atmospheric chemistry, with extensions to other geophysical sciences. The physical complexity and the high dimensionality of geophysical systems have led the community of geophysics to make significant contributions to the fundamental theory of data assimilation. This book is composed of a series of main lectures, presenting the fundamentals of four-dimensional variational data assimilation, the Kalman filter, smoothers, and the information theory background required to understand and evaluate the role of observations; a series of specialized lectures, addressing various aspects of data assimilation in detail, from the most recent developments in the theory to the specificities of various thematic applications.
Robert Blinc
- Published in print:
- 2011
- Published Online:
- January 2012
- ISBN:
- 9780199570942
- eISBN:
- 9780191728631
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199570942.001.0001
- Subject:
- Physics, Condensed Matter Physics / Materials
The field of ferroelectricity has greatly expanded and changed recently. In addition to classical organic and inorganic ferroelectrics as well as composite ferroelectrics new fields and materials ...
More
The field of ferroelectricity has greatly expanded and changed recently. In addition to classical organic and inorganic ferroelectrics as well as composite ferroelectrics new fields and materials have appeared, important for both basic science and application and showing technological promise for novel multifunctional devices. Most of these fields were unknown or inactive 20 to 40 years ago. Such new fields are multiferroic magnetoelectric systems, where the spontaneous polarization and the spontaneous magnetization are allowed to coexist, incommensurate ferroelectrics, where the periodicity of the order parameter is incommensurate to the periodicity of the underlying basic crystal lattice, ferroelectric liquid crystals, dipolar glasses, relaxor ferroelectrics, ferroelectric thin films and nanoferroelectrics. These new fields are in addition to basic physical interest also of great technological importance and allow for new memory devices, spintronic applications and electro‐optic devices. They are also important for applications in acoustics, robotics, telecommunications and medicine. New developments in relaxors allow for giant electromechanical and electrocaloric effects. The book is primarily intended for material scientists working in research or industry. It is also intended for graduate and doctoral students and can be used as a textbook in graduate courses. Finally, it should be useful for everybody following the development of modern solid‐state physics.Less
The field of ferroelectricity has greatly expanded and changed recently. In addition to classical organic and inorganic ferroelectrics as well as composite ferroelectrics new fields and materials have appeared, important for both basic science and application and showing technological promise for novel multifunctional devices. Most of these fields were unknown or inactive 20 to 40 years ago. Such new fields are multiferroic magnetoelectric systems, where the spontaneous polarization and the spontaneous magnetization are allowed to coexist, incommensurate ferroelectrics, where the periodicity of the order parameter is incommensurate to the periodicity of the underlying basic crystal lattice, ferroelectric liquid crystals, dipolar glasses, relaxor ferroelectrics, ferroelectric thin films and nanoferroelectrics. These new fields are in addition to basic physical interest also of great technological importance and allow for new memory devices, spintronic applications and electro‐optic devices. They are also important for applications in acoustics, robotics, telecommunications and medicine. New developments in relaxors allow for giant electromechanical and electrocaloric effects. The book is primarily intended for material scientists working in research or industry. It is also intended for graduate and doctoral students and can be used as a textbook in graduate courses. Finally, it should be useful for everybody following the development of modern solid‐state physics.
Claude Barrabès and Peter A. Hogan
- Published in print:
- 2013
- Published Online:
- September 2013
- ISBN:
- 9780199680696
- eISBN:
- 9780191760662
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199680696.001.0001
- Subject:
- Physics, Particle Physics / Astrophysics / Cosmology
This book is aimed at students who have completed a final year undergraduate course on general relativity and supplemented it with additional techniques by individual study or in a taught MSc ...
More
This book is aimed at students who have completed a final year undergraduate course on general relativity and supplemented it with additional techniques by individual study or in a taught MSc programme. The additional technical knowledge required involves the Cartan calculus, the tetrad formalism including aspects of the Newman–Penrose formalism, the Ehlers–Sachs theory of null geodesic congruences, and the Petrov classification of gravitational fields. Each chapter could be used as a basis for an advanced undergraduate or early postgraduate project. The topics covered fall under three general headings: Gravitational waves in vacuo and in a cosmological setting, equations of motion with particular emphasis on spinning particles, and black holes. These are not individual applications of the techniques mentioned above. The techniques are available for use in whole or in part (mainly in part) as each situation demands.Less
This book is aimed at students who have completed a final year undergraduate course on general relativity and supplemented it with additional techniques by individual study or in a taught MSc programme. The additional technical knowledge required involves the Cartan calculus, the tetrad formalism including aspects of the Newman–Penrose formalism, the Ehlers–Sachs theory of null geodesic congruences, and the Petrov classification of gravitational fields. Each chapter could be used as a basis for an advanced undergraduate or early postgraduate project. The topics covered fall under three general headings: Gravitational waves in vacuo and in a cosmological setting, equations of motion with particular emphasis on spinning particles, and black holes. These are not individual applications of the techniques mentioned above. The techniques are available for use in whole or in part (mainly in part) as each situation demands.
S. G. Rajeev
- Published in print:
- 2013
- Published Online:
- December 2013
- ISBN:
- 9780199670857
- eISBN:
- 9780191775154
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199670857.001.0001
- Subject:
- Physics, Atomic, Laser, and Optical Physics
This book begins with the ancient parts of classical mechanics: the variational principle, Lagrangian and Hamiltonian formalisms, and Poisson brackets. The simple pendulum provides a glimpse of the ...
More
This book begins with the ancient parts of classical mechanics: the variational principle, Lagrangian and Hamiltonian formalisms, and Poisson brackets. The simple pendulum provides a glimpse of the beauty of elliptic curves, which will also appear later in rigid body mechanics. Geodesics in Riemannian geometry are presented as an example of a Hamiltonian system. Conversely, the path of a non-relativistic particle is a geodesic in a metric that depends on the potential. Orbits around a black hole are found. Hamilton-Jacobi theory is discussed, showing a path towards quantum mechanics and a connection to the eikonal of optics. The three body problem is studied in detail, including small orbits around the Lagrange points. The dynamics of a charged particle in a magnetic field, especially a magnetic monopole, is studied in the Hamiltonian formalism. Spin is shown to be a classical phenomenon. Symplectic integrators that allow numerical solutions of mechanical systems are derived. A simplified version of Feigenbaum's theory of period doubling introduces chaos. Following a classification of Mobius transformations, this book studies chaos on the complex plane: Julia sets, Fatou sets, and the Mandelblot are explained. Newton's method for solution of non-linear equations is viewed as a dynamical system, allowing a novel approach to the reduction of matrices to canonical form. This is used as a stepping stone to the KAM theory of maps of a circle to itself, unravelling a connection to the Diophantine problem of number theory. KAM theory of the solution of the Hamilton-Jacobi equation using Newton's iteration concludes the book.Less
This book begins with the ancient parts of classical mechanics: the variational principle, Lagrangian and Hamiltonian formalisms, and Poisson brackets. The simple pendulum provides a glimpse of the beauty of elliptic curves, which will also appear later in rigid body mechanics. Geodesics in Riemannian geometry are presented as an example of a Hamiltonian system. Conversely, the path of a non-relativistic particle is a geodesic in a metric that depends on the potential. Orbits around a black hole are found. Hamilton-Jacobi theory is discussed, showing a path towards quantum mechanics and a connection to the eikonal of optics. The three body problem is studied in detail, including small orbits around the Lagrange points. The dynamics of a charged particle in a magnetic field, especially a magnetic monopole, is studied in the Hamiltonian formalism. Spin is shown to be a classical phenomenon. Symplectic integrators that allow numerical solutions of mechanical systems are derived. A simplified version of Feigenbaum's theory of period doubling introduces chaos. Following a classification of Mobius transformations, this book studies chaos on the complex plane: Julia sets, Fatou sets, and the Mandelblot are explained. Newton's method for solution of non-linear equations is viewed as a dynamical system, allowing a novel approach to the reduction of matrices to canonical form. This is used as a stepping stone to the KAM theory of maps of a circle to itself, unravelling a connection to the Diophantine problem of number theory. KAM theory of the solution of the Hamilton-Jacobi equation using Newton's iteration concludes the book.
Barry M McCoy
- Published in print:
- 2009
- Published Online:
- February 2010
- ISBN:
- 9780199556632
- eISBN:
- 9780191723278
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199556632.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This book begins where elementary books and courses leave off and covers the advances made in statistical mechanics in the past fifty years. The book is divided into three parts. The first part is on ...
More
This book begins where elementary books and courses leave off and covers the advances made in statistical mechanics in the past fifty years. The book is divided into three parts. The first part is on general theory which includes a summary of the basic principles of statistical mechanics; a presentation of the physical phenomena covered and the models used to discuss them; theorems on the existence and uniqueness of partition functions; theorems on order; and critical phenomena and scaling theory. The second part is on series and numerical methods which includes derivations of the Mayer and Ree–Hoover expansions of the low density virial equation of state; Groeneveld's theorems; the application to hard spheres and discs; a summary of numerical studies of systems at high density; and the use of high temperature series expansions to estimate critical exponents for magnets. The third part covers exactly solvable models which includes a detailed presentation of the Pfaffian methods of computing the Ising partition function, magnetization, correlation functions, and susceptibility; the star-triangle (Yang–Baxter equation); functional equations and the free energy for the eight-vertex model; and the hard hexagon and chiral Potts models. All needed mathematics is developed in detail and many open questions are discussed. The goal is to guide the reader to the current forefront of research.Less
This book begins where elementary books and courses leave off and covers the advances made in statistical mechanics in the past fifty years. The book is divided into three parts. The first part is on general theory which includes a summary of the basic principles of statistical mechanics; a presentation of the physical phenomena covered and the models used to discuss them; theorems on the existence and uniqueness of partition functions; theorems on order; and critical phenomena and scaling theory. The second part is on series and numerical methods which includes derivations of the Mayer and Ree–Hoover expansions of the low density virial equation of state; Groeneveld's theorems; the application to hard spheres and discs; a summary of numerical studies of systems at high density; and the use of high temperature series expansions to estimate critical exponents for magnets. The third part covers exactly solvable models which includes a detailed presentation of the Pfaffian methods of computing the Ising partition function, magnetization, correlation functions, and susceptibility; the star-triangle (Yang–Baxter equation); functional equations and the free energy for the eight-vertex model; and the hard hexagon and chiral Potts models. All needed mathematics is developed in detail and many open questions are discussed. The goal is to guide the reader to the current forefront of research.
Wai-Kee Li, Gong-Du Zhou, and Thomas Mak
- Published in print:
- 2008
- Published Online:
- May 2008
- ISBN:
- 9780199216949
- eISBN:
- 9780191711992
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199216949.001.0001
- Subject:
- Physics, Crystallography: Physics
This text is an updated English version of a class-tested textbook originally published in Chinese in 2006. Its contents are based on the lecture notes of several courses taught by the authors at The ...
More
This text is an updated English version of a class-tested textbook originally published in Chinese in 2006. Its contents are based on the lecture notes of several courses taught by the authors at The Chinese University of Hong Kong and Peking University. These courses include Chemical Bonding, Structure and Properties of Matter, Advanced Inorganic Chemistry, Quantum Chemistry, Group Theory, and Chemical Crystallography. This book consists of three parts. Part I reviews the basic theories of chemical bonding, with chapters on elementary quantum theory, atomic structure, bonding in molecules, bonding in solids, and computational chemistry. Part II introduces point groups and space groups, and their applications to the study of discrete molecules and crystals. A large number of worked examples are provided in order to illustrate the usefulness and elegance of the symmetry concept. Part III constitutes about half of the book and it gives a succinct description of the structural chemistry of the elements in the Periodic Table. The main-group elements are covered in seven chapters and three other chapters deal with the rare-earth elements, transition-metal clusters and supramolecular systems. The selected systems, many of them from recent literature, are used to elucidate various aspects of structure and bonding presented in Parts I and II, and to expound the current research trends in structural inorganic chemistryLess
This text is an updated English version of a class-tested textbook originally published in Chinese in 2006. Its contents are based on the lecture notes of several courses taught by the authors at The Chinese University of Hong Kong and Peking University. These courses include Chemical Bonding, Structure and Properties of Matter, Advanced Inorganic Chemistry, Quantum Chemistry, Group Theory, and Chemical Crystallography. This book consists of three parts. Part I reviews the basic theories of chemical bonding, with chapters on elementary quantum theory, atomic structure, bonding in molecules, bonding in solids, and computational chemistry. Part II introduces point groups and space groups, and their applications to the study of discrete molecules and crystals. A large number of worked examples are provided in order to illustrate the usefulness and elegance of the symmetry concept. Part III constitutes about half of the book and it gives a succinct description of the structural chemistry of the elements in the Periodic Table. The main-group elements are covered in seven chapters and three other chapters deal with the rare-earth elements, transition-metal clusters and supramolecular systems. The selected systems, many of them from recent literature, are used to elucidate various aspects of structure and bonding presented in Parts I and II, and to expound the current research trends in structural inorganic chemistry
John Banhart (ed.)
- Published in print:
- 2008
- Published Online:
- May 2008
- ISBN:
- 9780199213245
- eISBN:
- 9780191707582
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199213245.001.0001
- Subject:
- Physics, Condensed Matter Physics / Materials
Tomography provides three-dimensional images of heterogeneous materials or engineering components, and offers an unprecedented insight into their internal structure. By using X-rays generated by ...
More
Tomography provides three-dimensional images of heterogeneous materials or engineering components, and offers an unprecedented insight into their internal structure. By using X-rays generated by synchrotrons, neutrons from nuclear reactors, or electrons provided by transmission electron microscopes, hitherto invisible structures can be revealed which are not accessible to conventional tomography based on X-ray tubes. This book provides detailed descriptions of the recent developments in this field, especially the extension of tomography to materials research and engineering. The book is grouped into four parts: a general introduction into the principles of tomography, image analysis and the interactions between radiation and matter, and one part each for synchrotron X-ray tomography, neutron tomography, and electron tomography. Within these parts, individual chapters written by different authors describe important versions of tomography, and also provide examples of applications to demonstrate the capacity of the methods.Less
Tomography provides three-dimensional images of heterogeneous materials or engineering components, and offers an unprecedented insight into their internal structure. By using X-rays generated by synchrotrons, neutrons from nuclear reactors, or electrons provided by transmission electron microscopes, hitherto invisible structures can be revealed which are not accessible to conventional tomography based on X-ray tubes. This book provides detailed descriptions of the recent developments in this field, especially the extension of tomography to materials research and engineering. The book is grouped into four parts: a general introduction into the principles of tomography, image analysis and the interactions between radiation and matter, and one part each for synchrotron X-ray tomography, neutron tomography, and electron tomography. Within these parts, individual chapters written by different authors describe important versions of tomography, and also provide examples of applications to demonstrate the capacity of the methods.
Michael Bordag, Galina Leonidovna Klimchitskaya, Umar Mohideen, and Vladimir Mikhaylovich Mostepanenko
- Published in print:
- 2009
- Published Online:
- September 2009
- ISBN:
- 9780199238743
- eISBN:
- 9780191716461
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780199238743.001.0001
- Subject:
- Physics, Condensed Matter Physics / Materials, Atomic, Laser, and Optical Physics
The subject of this book is the Casimir effect, i.e., a manifestation of zero-point oscillations of the quantum vacuum in the form of forces acting between closely spaced bodies. It is a purely ...
More
The subject of this book is the Casimir effect, i.e., a manifestation of zero-point oscillations of the quantum vacuum in the form of forces acting between closely spaced bodies. It is a purely quantum effect. There is no force acting between neutral bodies in classical electrodynamics. The Casimir effect has become an interdisciplinary subject. It plays an important role in various fields of physics such as condensed matter physics, quantum field theory, atomic and molecular physics, gravitation and cosmology, and mathematical physics. Most recently, the Casimir effect has been applied to nanotechnology and for obtaining constraints on the predictions of unification theories beyond the Standard Model. The book assembles together the field-theoretical foundations of this phenomenon, the application of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force, including the comparison between experiment and theory. There is increasing interest in forces of vacuum origin. Numerous new results have been obtained during the last few years which are not reflected in the literature, but are very promising for fundamental science and nanotechnology. The book provides a source of information which presents a critical assessment of all of the main results and approaches contained in published journal papers. It also proposes new ideas which are not yet universally accepted but are finding increasing support from experiment.Less
The subject of this book is the Casimir effect, i.e., a manifestation of zero-point oscillations of the quantum vacuum in the form of forces acting between closely spaced bodies. It is a purely quantum effect. There is no force acting between neutral bodies in classical electrodynamics. The Casimir effect has become an interdisciplinary subject. It plays an important role in various fields of physics such as condensed matter physics, quantum field theory, atomic and molecular physics, gravitation and cosmology, and mathematical physics. Most recently, the Casimir effect has been applied to nanotechnology and for obtaining constraints on the predictions of unification theories beyond the Standard Model. The book assembles together the field-theoretical foundations of this phenomenon, the application of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force, including the comparison between experiment and theory. There is increasing interest in forces of vacuum origin. Numerous new results have been obtained during the last few years which are not reflected in the literature, but are very promising for fundamental science and nanotechnology. The book provides a source of information which presents a critical assessment of all of the main results and approaches contained in published journal papers. It also proposes new ideas which are not yet universally accepted but are finding increasing support from experiment.
Roger H. Stuewer
- Published in print:
- 2018
- Published Online:
- September 2018
- ISBN:
- 9780198827870
- eISBN:
- 9780191866586
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198827870.001.0001
- Subject:
- Physics, History of Physics, Nuclear and Plasma Physics
Nuclear physics emerged as the dominant field in experimental and theoretical physics between 1919 and 1939, the two decades between the First and Second World Wars. Milestones were Ernest ...
More
Nuclear physics emerged as the dominant field in experimental and theoretical physics between 1919 and 1939, the two decades between the First and Second World Wars. Milestones were Ernest Rutherford’s discovery of artificial nuclear disintegration (1919), George Gamow’s and Ronald Gurney and Edward Condon’s simultaneous quantum-mechanical theory of alpha decay (1928), Harold Urey’s discovery of deuterium (the deuteron), James Chadwick’s discovery of the neutron, Carl Anderson’s discovery of the positron, John Cockcroft and Ernest Walton’s invention of their eponymous linear accelerator, and Ernest Lawrence’s invention of the cyclotron (1931–2), Frédéric and Irène Joliot-Curie’s discovery and confirmation of artificial radioactivity (1934), Enrico Fermi’s theory of beta decay based on Wolfgang Pauli’s neutrino hypothesis and Fermi’s discovery of the efficacy of slow neutrons in nuclear reactions (1934), Niels Bohr’s theory of the compound nucleus and Gregory Breit and Eugene Wigner’s theory of nucleus+neutron resonances (1936), and Lise Meitner and Otto Robert Frisch’s interpretation of nuclear fission, based on Gamow’s liquid-drop model of the nucleus (1938), which Frisch confirmed experimentally (1939). These achievements reflected the idiosyncratic personalities of the physicists who made them; they were shaped by the physical and intellectual environments of the countries and institutions in which they worked; and they were buffeted by the profound social and political upheavals after the Great War: the punitive postwar treaties, the runaway inflation in Germany and Austria, the Great Depression, and the greatest intellectual migration in history, which encompassed some of the most gifted experimental and theoretical nuclear physicists in the world.Less
Nuclear physics emerged as the dominant field in experimental and theoretical physics between 1919 and 1939, the two decades between the First and Second World Wars. Milestones were Ernest Rutherford’s discovery of artificial nuclear disintegration (1919), George Gamow’s and Ronald Gurney and Edward Condon’s simultaneous quantum-mechanical theory of alpha decay (1928), Harold Urey’s discovery of deuterium (the deuteron), James Chadwick’s discovery of the neutron, Carl Anderson’s discovery of the positron, John Cockcroft and Ernest Walton’s invention of their eponymous linear accelerator, and Ernest Lawrence’s invention of the cyclotron (1931–2), Frédéric and Irène Joliot-Curie’s discovery and confirmation of artificial radioactivity (1934), Enrico Fermi’s theory of beta decay based on Wolfgang Pauli’s neutrino hypothesis and Fermi’s discovery of the efficacy of slow neutrons in nuclear reactions (1934), Niels Bohr’s theory of the compound nucleus and Gregory Breit and Eugene Wigner’s theory of nucleus+neutron resonances (1936), and Lise Meitner and Otto Robert Frisch’s interpretation of nuclear fission, based on Gamow’s liquid-drop model of the nucleus (1938), which Frisch confirmed experimentally (1939). These achievements reflected the idiosyncratic personalities of the physicists who made them; they were shaped by the physical and intellectual environments of the countries and institutions in which they worked; and they were buffeted by the profound social and political upheavals after the Great War: the punitive postwar treaties, the runaway inflation in Germany and Austria, the Great Depression, and the greatest intellectual migration in history, which encompassed some of the most gifted experimental and theoretical nuclear physicists in the world.
Akira Namatame and Shu-Heng Chen
- Published in print:
- 2016
- Published Online:
- March 2016
- ISBN:
- 9780198708285
- eISBN:
- 9780191779404
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198708285.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with ...
More
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the given foundation, the second part reviews three primary forms of network dynamics, i.e., diffusions, cascades, and influences. These primary dynamics are further extended and enriched by practical networks in goods-and-service markets, labor markets, and international trade. The book ends with two challenging issues using agent-based models of networks, i.e., network risks and economic growth.Less
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the given foundation, the second part reviews three primary forms of network dynamics, i.e., diffusions, cascades, and influences. These primary dynamics are further extended and enriched by practical networks in goods-and-service markets, labor markets, and international trade. The book ends with two challenging issues using agent-based models of networks, i.e., network risks and economic growth.
Stephen Cave, Kanta Dihal, and Sarah Dillon (eds)
- Published in print:
- 2020
- Published Online:
- April 2020
- ISBN:
- 9780198846666
- eISBN:
- 9780191881817
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198846666.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
This book is the first to examine the history of imaginative thinking about intelligent machines. As real artificial intelligence (AI) begins to touch on all aspects of our lives, this long narrative ...
More
This book is the first to examine the history of imaginative thinking about intelligent machines. As real artificial intelligence (AI) begins to touch on all aspects of our lives, this long narrative history shapes how the technology is developed, deployed, and regulated. It is therefore a crucial social and ethical issue. Part I of this book provides a historical overview from ancient Greece to the start of modernity. These chapters explore the revealing prehistory of key concerns of contemporary AI discourse, from the nature of mind and creativity to issues of power and rights, from the tension between fascination and ambivalence to investigations into artificial voices and technophobia. Part II focuses on the twentieth and twenty-first centuries in which a greater density of narratives emerged alongside rapid developments in AI technology. These chapters reveal not only how AI narratives have consistently been entangled with the emergence of real robotics and AI, but also how they offer a rich source of insight into how we might live with these revolutionary machines. Through their close textual engagements, these chapters explore the relationship between imaginative narratives and contemporary debates about AI’s social, ethical, and philosophical consequences, including questions of dehumanization, automation, anthropomorphization, cybernetics, cyberpunk, immortality, slavery, and governance. The contributions, from leading humanities and social science scholars, show that narratives about AI offer a crucial epistemic site for exploring contemporary debates about these powerful new technologies.Less
This book is the first to examine the history of imaginative thinking about intelligent machines. As real artificial intelligence (AI) begins to touch on all aspects of our lives, this long narrative history shapes how the technology is developed, deployed, and regulated. It is therefore a crucial social and ethical issue. Part I of this book provides a historical overview from ancient Greece to the start of modernity. These chapters explore the revealing prehistory of key concerns of contemporary AI discourse, from the nature of mind and creativity to issues of power and rights, from the tension between fascination and ambivalence to investigations into artificial voices and technophobia. Part II focuses on the twentieth and twenty-first centuries in which a greater density of narratives emerged alongside rapid developments in AI technology. These chapters reveal not only how AI narratives have consistently been entangled with the emergence of real robotics and AI, but also how they offer a rich source of insight into how we might live with these revolutionary machines. Through their close textual engagements, these chapters explore the relationship between imaginative narratives and contemporary debates about AI’s social, ethical, and philosophical consequences, including questions of dehumanization, automation, anthropomorphization, cybernetics, cyberpunk, immortality, slavery, and governance. The contributions, from leading humanities and social science scholars, show that narratives about AI offer a crucial epistemic site for exploring contemporary debates about these powerful new technologies.
John Meurig Thomas
- Published in print:
- 2021
- Published Online:
- February 2022
- ISBN:
- 9780192898005
- eISBN:
- 9780191924453
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780192898005.001.0001
- Subject:
- Physics, Nuclear and Plasma Physics
The Royal Institution of Great Britain is renowned the world over, first, because if is a premier arena for the advancement of new scientific and technological knowledge; and second because it ...
More
The Royal Institution of Great Britain is renowned the world over, first, because if is a premier arena for the advancement of new scientific and technological knowledge; and second because it highlights the advance of knowledge of all kinds. It bridges the sciences and the humanities, and as much publicity is given to advances in the arts, archaelogy, architecture, drama and literature as to the pure and applied sciences. More famous scientists have lived and worked in the RI than in any other laboratory in the world. A roll-call includes Rumford, Davy, Faraday, Tyndall, Dewar, Rayleigh, W. H. Bragg, W. L. Bragg and George Porter. Not is it only the home of continuous electricity, it is also the birthplace of many aspects of molecular biology and viruses and enzymology. Some fifteen scientists who have won the Nobel Prize have, at one time or another, worked or lectured at the RI. And eminent individuals, like Howard Carter and Coleridge, have lectured there.Less
The Royal Institution of Great Britain is renowned the world over, first, because if is a premier arena for the advancement of new scientific and technological knowledge; and second because it highlights the advance of knowledge of all kinds. It bridges the sciences and the humanities, and as much publicity is given to advances in the arts, archaelogy, architecture, drama and literature as to the pure and applied sciences. More famous scientists have lived and worked in the RI than in any other laboratory in the world. A roll-call includes Rumford, Davy, Faraday, Tyndall, Dewar, Rayleigh, W. H. Bragg, W. L. Bragg and George Porter. Not is it only the home of continuous electricity, it is also the birthplace of many aspects of molecular biology and viruses and enzymology. Some fifteen scientists who have won the Nobel Prize have, at one time or another, worked or lectured at the RI. And eminent individuals, like Howard Carter and Coleridge, have lectured there.
David R. Steward
- Published in print:
- 2020
- Published Online:
- November 2020
- ISBN:
- 9780198856788
- eISBN:
- 9780191890031
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/oso/9780198856788.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
The Analytic Element Method provides a foundation to solve boundary value problems commonly encountered in engineering and science. The goals are: to introduce readers to the basic principles of the ...
More
The Analytic Element Method provides a foundation to solve boundary value problems commonly encountered in engineering and science. The goals are: to introduce readers to the basic principles of the AEM, to provide a template for those interested in pursuing these methods, and to empower readers to extend the AEM paradigm to an even broader range of problems. A comprehensive paradigm: place an element within its landscape, formulate its interactions with other elements using linear series of influence functions, and then solve for its coefficients to match its boundary and interface conditions with nearly exact precision. Collectively, sets of elements interact to transform their environment, and these synergistic interactions are expanded upon for three common types of problems. The first problem studies a vector field that is directed from high to low values of a function, and applications include: groundwater flow, vadose zone seepage, incompressible fluid flow, thermal conduction and electrostatics. A second type of problem studies the interactions of elements with waves, with applications including water waves and acoustics. A third type of problem studies the interactions of elements with stresses and displacements, with applications in elasticity for structures and geomechanics. The Analytic Element Method paradigm comprehensively employs a background of existing methodology using complex functions, separation of variables and singular integral equations. This text puts forth new methods to solving important problems across engineering and science, and has a tremendous potential to broaden perspective and change the way problems are formulated.Less
The Analytic Element Method provides a foundation to solve boundary value problems commonly encountered in engineering and science. The goals are: to introduce readers to the basic principles of the AEM, to provide a template for those interested in pursuing these methods, and to empower readers to extend the AEM paradigm to an even broader range of problems. A comprehensive paradigm: place an element within its landscape, formulate its interactions with other elements using linear series of influence functions, and then solve for its coefficients to match its boundary and interface conditions with nearly exact precision. Collectively, sets of elements interact to transform their environment, and these synergistic interactions are expanded upon for three common types of problems. The first problem studies a vector field that is directed from high to low values of a function, and applications include: groundwater flow, vadose zone seepage, incompressible fluid flow, thermal conduction and electrostatics. A second type of problem studies the interactions of elements with waves, with applications including water waves and acoustics. A third type of problem studies the interactions of elements with stresses and displacements, with applications in elasticity for structures and geomechanics. The Analytic Element Method paradigm comprehensively employs a background of existing methodology using complex functions, separation of variables and singular integral equations. This text puts forth new methods to solving important problems across engineering and science, and has a tremendous potential to broaden perspective and change the way problems are formulated.
Oliver Johns
- Published in print:
- 2005
- Published Online:
- January 2010
- ISBN:
- 9780198567264
- eISBN:
- 9780191717987
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198567264.001.0001
- Subject:
- Physics, Atomic, Laser, and Optical Physics
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. A ...
More
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum mechanics. Comparisons to quantum mechanics appear throughout the text. The extended Hamiltonian theory with time as a coordinate is compared to Dirac’s formalism of primary phase space constraints. The chapter on relativistic mechanics shows how to use covariant Hamiltonian theory to write the Klein-Gordon and Dirac equations. The chapter on Hamilton-Jacobi theory includes a discussion of the closely related Bohm hidden variable model of quantum mechanics. Classical mechanics itself is presented with an emphasis on methods, such as linear vector operators and dyadics, that will familiarise the student with similar techniques in quantum theory. Several of the current fundamental problems in theoretical physics, such as the development of quantum information technology and the problem of quantising the gravitational field, require a rethinking of the quantum-classical connection.Less
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum mechanics. Comparisons to quantum mechanics appear throughout the text. The extended Hamiltonian theory with time as a coordinate is compared to Dirac’s formalism of primary phase space constraints. The chapter on relativistic mechanics shows how to use covariant Hamiltonian theory to write the Klein-Gordon and Dirac equations. The chapter on Hamilton-Jacobi theory includes a discussion of the closely related Bohm hidden variable model of quantum mechanics. Classical mechanics itself is presented with an emphasis on methods, such as linear vector operators and dyadics, that will familiarise the student with similar techniques in quantum theory. Several of the current fundamental problems in theoretical physics, such as the development of quantum information technology and the problem of quantising the gravitational field, require a rethinking of the quantum-classical connection.
Oliver Johns
- Published in print:
- 2011
- Published Online:
- December 2013
- ISBN:
- 9780191001628
- eISBN:
- 9780191775161
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780191001628.001.0001
- Subject:
- Physics, Atomic, Laser, and Optical Physics
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics, and of the relation of classical mechanics to relativity and quantum theory. A ...
More
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics, and of the relation of classical mechanics to relativity and quantum theory. A distinguishing feature is its integration of special relativity into the teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. The definition of canonical transformation no longer excludes the Lorentz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum mechanics since comparisons to quantum mechanics appear throughout the text. The extended Hamiltonian theory with time as a coordinate is compared to Dirac's formalism of primary phase space constraints. The chapter on relativistic mechanics shows how to use covariant Hamiltonian theory to write the Klein-Gordon and Dirac equations. The chapter on Hamilton-Jacobi theory includes a discussion of the closely related Bohm hidden variable model of quantum mechanics. Classical mechanics itself is presented with an emphasis on methods such as linear vector operators and dyadics that will familiarise the student with similar techniques in quantum theory. Several of the current fundamental problems in theoretical physics require a rethinking of the quantum–classical connection.Less
This book provides an innovative and mathematically sound treatment of the foundations of analytical mechanics, and of the relation of classical mechanics to relativity and quantum theory. A distinguishing feature is its integration of special relativity into the teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. The definition of canonical transformation no longer excludes the Lorentz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum mechanics since comparisons to quantum mechanics appear throughout the text. The extended Hamiltonian theory with time as a coordinate is compared to Dirac's formalism of primary phase space constraints. The chapter on relativistic mechanics shows how to use covariant Hamiltonian theory to write the Klein-Gordon and Dirac equations. The chapter on Hamilton-Jacobi theory includes a discussion of the closely related Bohm hidden variable model of quantum mechanics. Classical mechanics itself is presented with an emphasis on methods such as linear vector operators and dyadics that will familiarise the student with similar techniques in quantum theory. Several of the current fundamental problems in theoretical physics require a rethinking of the quantum–classical connection.
Reinhold A. Bertlmann
- Published in print:
- 2000
- Published Online:
- February 2010
- ISBN:
- 9780198507628
- eISBN:
- 9780191706400
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198507628.001.0001
- Subject:
- Physics, Theoretical, Computational, and Statistical Physics
The anomaly, which forms the central part of this book, is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper ...
More
The anomaly, which forms the central part of this book, is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past twenty years. This book presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies.Less
The anomaly, which forms the central part of this book, is the failure of classical symmetry to survive the process of quantization and regularization. The study of anomalies is the key to a deeper understanding of quantum field theory and has played an increasingly important role in the theory over the past twenty years. This book presents all the different aspects of the study of anomalies in an accessible and self-contained way. Much emphasis is now being placed on the formulation of the theory using the mathematical ideas of differential geometry and topology. This approach is followed here, and the derivations and calculations are given explicitly. Topics discussed include the relevant ideas from differential geometry and topology and the application of these paths (path integrals, differential forms, homotopy operators, etc.) to the study of anomalies. Chapters are devoted to abelian and nonabelian anomalies, consistent and covariant anomalies, and gravitational anomalies.
Ted Janssen, Gervais Chapuis, and Marc de Boissieu
- Published in print:
- 2007
- Published Online:
- September 2007
- ISBN:
- 9780198567776
- eISBN:
- 9780191718335
- Item type:
- book
- Publisher:
- Oxford University Press
- DOI:
- 10.1093/acprof:oso/9780198567776.001.0001
- Subject:
- Physics, Crystallography: Physics
Until the 1970s, all materials studied consisted of periodic arrays of unit cells, or were amorphous. In the last decades a new class of solid state matter, called aperiodic crystals, has been found. ...
More
Until the 1970s, all materials studied consisted of periodic arrays of unit cells, or were amorphous. In the last decades a new class of solid state matter, called aperiodic crystals, has been found. It is a long range ordered structure, but without lattice periodicity. It is found in a wide range of materials: organic and anorganic compounds, minerals (including a substantial portion of the earths crust), and metallic alloys, under various pressures and temperatures. Because of the lack of periodicity, the usual techniques for the study of structure and physical properties no longer work, and new techniques have to be developed. This book deals with the characterization of the structure, the structure determination, and the study of the physical properties, especially dynamical and electronic properties of aperiodic crystals. The treatment is based on a description in a space with more dimensions than three, the so-called superspace. This allows us to generalise the standard crystallography and to look differently at the dynamics. The three main classes of aperiodic crystals, modulated phases, incommensurate composites, and quasicrystals are treated from a unified point of view, which stresses the similarities of the various systems.Less
Until the 1970s, all materials studied consisted of periodic arrays of unit cells, or were amorphous. In the last decades a new class of solid state matter, called aperiodic crystals, has been found. It is a long range ordered structure, but without lattice periodicity. It is found in a wide range of materials: organic and anorganic compounds, minerals (including a substantial portion of the earths crust), and metallic alloys, under various pressures and temperatures. Because of the lack of periodicity, the usual techniques for the study of structure and physical properties no longer work, and new techniques have to be developed. This book deals with the characterization of the structure, the structure determination, and the study of the physical properties, especially dynamical and electronic properties of aperiodic crystals. The treatment is based on a description in a space with more dimensions than three, the so-called superspace. This allows us to generalise the standard crystallography and to look differently at the dynamics. The three main classes of aperiodic crystals, modulated phases, incommensurate composites, and quasicrystals are treated from a unified point of view, which stresses the similarities of the various systems.