- Title Pages
- Dedication
- Preface to Second Edition
- Preface to First Edition
- Acknowledgments
- 1 Basic Dynamics of Point Particles and Collections
- 2 Introduction to Lagrangian Mechanics
- 3 Lagrangian Theory of Constraints
- 4 Introduction to Hamiltonian Mechanics
- 5 The Calculus of Variations
- 6 Hamilton's Principle
- 7 Linear Operators and Dyadics
- 8 Kinematics of Rotation
- 9 Rotational Dynamics
- 10 Small Vibrations about Equilibrium
- 11 Central Force Motion
- 12 Scattering
- 13 Lagrangian Mechanics with Time as a Coordinate
- 14 Hamiltonian Mechanics with Time as a Coordinate
- 15 Hamilton'S Principle and Noether's Theorem
- 16 Relativity and Spacetime
- 17 Fourvectors and Operators
- 18 Relativistic Mechanics
- 19 Canonical Transformations
- 20 Generating Functions
- 21 Hamilton-Jacobi Therory
- 22 Angle‐Action Variables
- Appendix A Vector Fundamentals
- Appendix B Matrices and Determinants
- Appendix C Eigenvalue Problem with General Metric
- Appendix D The Calculus of Many Variables
- Appendix E Geometry of Phase Space
- References
- Index
Generating Functions
Generating Functions
- Chapter:
- (p.451) 20 Generating Functions
- Source:
- Analytical Mechanics for Relativity and Quantum Mechanics
- Author(s):
Oliver Davis Johns
- Publisher:
- Oxford University Press
This chapter proposes methods for creating transformations that will automatically be canonical. Canonical transformations can be created by first choosing what are called generating functions. Using one of these generating functions in the formalism to be described will generate a transformation that will be canonical by construction. The generating functions can be quite general, leading to a wide selection of possible canonical transformations. Not only does every generating function lead to a canonical transformation, the converse is also true. Given any canonical transformation, a generating function can always be found that will generate it. The chapter begins by first relating canonical transformations to the existence of an intermediate function that will be called a protogenerating function.
Keywords: generating functions, formalism, canonical transformations, intermediate function, protogenerating function
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Dedication
- Preface to Second Edition
- Preface to First Edition
- Acknowledgments
- 1 Basic Dynamics of Point Particles and Collections
- 2 Introduction to Lagrangian Mechanics
- 3 Lagrangian Theory of Constraints
- 4 Introduction to Hamiltonian Mechanics
- 5 The Calculus of Variations
- 6 Hamilton's Principle
- 7 Linear Operators and Dyadics
- 8 Kinematics of Rotation
- 9 Rotational Dynamics
- 10 Small Vibrations about Equilibrium
- 11 Central Force Motion
- 12 Scattering
- 13 Lagrangian Mechanics with Time as a Coordinate
- 14 Hamiltonian Mechanics with Time as a Coordinate
- 15 Hamilton'S Principle and Noether's Theorem
- 16 Relativity and Spacetime
- 17 Fourvectors and Operators
- 18 Relativistic Mechanics
- 19 Canonical Transformations
- 20 Generating Functions
- 21 Hamilton-Jacobi Therory
- 22 Angle‐Action Variables
- Appendix A Vector Fundamentals
- Appendix B Matrices and Determinants
- Appendix C Eigenvalue Problem with General Metric
- Appendix D The Calculus of Many Variables
- Appendix E Geometry of Phase Space
- References
- Index