- Title Pages
- Dedication
- Preface
- Acknowledgments
- I.1 Fundamentals of Electricity
- I.2 Patch-Clamp Recording
- I.3 Physical Basis for the Resting Potential
- I.4 Basis of the Nerve Impulse
- I.5 Properties of Neurons
- I.6 Electrophysiology of Neuronal Interactions
- I.7 Neuronal Oscillators
- SECTION II DESCRIPTION OF THE MODELS
- II.1 Electricity Model
- II.2 Patch Model
- II.3 Soma Model
- II.4 Axon Models
- II.5 Neuron Model
- II.6 Synapse Model
- II.7 Circuit Model
- II.8 Stimulator Control
- SECTION III EQUATIONS UNDERLYING NEURODYNAMIX II SIMULATIONS
- III.1 Equations Underlying the Electricity Model
- III.2 Equations Underlying the Patch Model
- III.3 Equations Underlying the Soma Model
- III.4 Equations Underlying the Axon Models
- III.5 Equations Underlying the Neuron Model
- III.6 Equations Underlying the Synapse Model
- III.7 Equations Underlying the Circuit Model
- IV.1 Form of the Equations
- IV.2 Numerical Solution
- Guide to <i>NeuroDynamix II</i> Software
- Bibliography
- Index
Neuronal Oscillators
Neuronal Oscillators
- Chapter:
- (p.126) I.7 Neuronal Oscillators
- Source:
- NeuroDynamix II
- Author(s):
W. Otto Friesen
Jonathon A. Friesen
- Publisher:
- Oxford University Press
It is known since the pioneering work of Adrian in the 1931s that the completely isolated nervous system can generate impulse patterns that are correctly structured for commanding meaningful movements. This chapter addresses the question of how neurons form circuits that play specific functional roles in generating animal movements, particularly rhythmic movements. Several mechanisms by which simple circuits can generate rhythmic activity patterns are described. These include reciprocal inhibition in circuits comprising only two neurons, recurrent cyclic inhibition in three-neuron loops, and the basic circuit that generates swimming movements in the sea slug Tritonia.
Keywords: circuit, oscillation, rhythm, Tritonia, leech, reciprocal inhibition, recurrent cyclic inhibition, synaptic fatigue
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Dedication
- Preface
- Acknowledgments
- I.1 Fundamentals of Electricity
- I.2 Patch-Clamp Recording
- I.3 Physical Basis for the Resting Potential
- I.4 Basis of the Nerve Impulse
- I.5 Properties of Neurons
- I.6 Electrophysiology of Neuronal Interactions
- I.7 Neuronal Oscillators
- SECTION II DESCRIPTION OF THE MODELS
- II.1 Electricity Model
- II.2 Patch Model
- II.3 Soma Model
- II.4 Axon Models
- II.5 Neuron Model
- II.6 Synapse Model
- II.7 Circuit Model
- II.8 Stimulator Control
- SECTION III EQUATIONS UNDERLYING NEURODYNAMIX II SIMULATIONS
- III.1 Equations Underlying the Electricity Model
- III.2 Equations Underlying the Patch Model
- III.3 Equations Underlying the Soma Model
- III.4 Equations Underlying the Axon Models
- III.5 Equations Underlying the Neuron Model
- III.6 Equations Underlying the Synapse Model
- III.7 Equations Underlying the Circuit Model
- IV.1 Form of the Equations
- IV.2 Numerical Solution
- Guide to <i>NeuroDynamix II</i> Software
- Bibliography
- Index