- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index
General Non-Linear Models In Two Dimensions
General Non-Linear Models In Two Dimensions
- Chapter:
- (p.365) 15 GENERAL NON-LINEAR MODELS IN TWO DIMENSIONS
- Source:
- Quantum Field Theory and Critical Phenomena
- Author(s):
JEAN ZINN-JUSTIN
- Publisher:
- Oxford University Press
This chapter describes the formal properties and discusses the renormalization of a class of geometric models: models based on homogeneous spaces. Homogeneous spaces are associated with non-linear realizations of group representations and these models are natural generalizations of the non-linear σ-model considered in Chapter 14. They can be studied in different parametrizations corresponding to different choices of coordinates when these spaces are considered as Riemannian manifolds. However, in contrast with arbitrary manifolds, there exist natural ways to embed these manifolds in flat euclidean spaces, spaces in which the symmetry group acts linearly. This is the system of coordinates used in the discussion of the non-linear σ-model and again used in the first part of this chapter because the renormalization properties are simpler and the physical interpretation of correlation functions more direct. It then examines some properties of these models in a generic parametrization. The renormalization problem is solved by the introduction of a symmetry (generally called BRS symmetry) with anticommuting (Grassmann) parameters which, later, will play an essential role in the renormalization of gauge theories. The second part of the chapter studies the more specific properties of models corresponding to a special class of homogeneous spaces: symmetric spaces. The chapter ends with comments about more general models based on non-compact groups and arbitrary Riemannian manifolds.
Keywords: homogeneous spaces, renormalization, anticommuting parameters, symmetric spaces
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index