- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index

# Quantum Field Theory At Finite Temperature: Equilibrium Properties

# Quantum Field Theory At Finite Temperature: Equilibrium Properties

- Chapter:
- (p.885) 38 QUANTUM FIELD THEORY AT FINITE TEMPERATURE: EQUILIBRIUM PROPERTIES
- Source:
- Quantum Field Theory and Critical Phenomena
- Author(s):
### JEAN ZINN-JUSTIN

- Publisher:
- Oxford University Press

This chapter reviews some equilibrium properties in Statistical Quantum Field Theory, that is, relativistic Quantum Field Theory (QFT) at finite temperature, a relativistic extension of the statistical quantum theories discussed in Sections 5.5, 5.6. It discusess, in particular, the limit of high temperature or the situation of finite temperature phase transitions. It emphasizes that additional physical intuition about QFT at finite temperature in (1; *d* - 1) dimensions can be gained by realizing that it can also be considered as a classical statistical field theory in *d* dimensions with finite size in one dimension. This identification allows, in particular, an analysis of finite temperature QFT in terms of the renormalization group and the theory of finite size effects of the classical theory. These ideas are illustrated with several standard examples, the φ^{4} field theory, the non-linear σ model, the Gross–Neveu model, some gauge theories. The corresponding effective reduced theories are constructed at one-loop order. In models where the field is a *N*-component vector, the large *N* expansion provides a specially convenient tool to study the complete crossover between low and high temperature, and, therefore, dimensional reduction.

*Keywords:*
finite temperature phase transitions, equilibrium, quantum field theory, Gross–Neveu model, gauge theories

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .

- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index