- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index
Relativistic Fermions
Relativistic Fermions
- Chapter:
- (p.184) 8 RELATIVISTIC FERMIONS
- Source:
- Quantum Field Theory and Critical Phenomena
- Author(s):
JEAN ZINN-JUSTIN
- Publisher:
- Oxford University Press
This chapter discusses boson field theories, occasionally considering theories with fermions, in particular, when the fermion nature of fields plays an essential role. It analyzes the free action for Dirac fermions, and explains the relation between fields and particles. It then derives an expression of the scattering matrix and discusses the non-relativistic limit of a model of self-coupled massive Dirac fermions. It introduces the formalism of euclidean relativistic fermions. In the euclidean formalism fermions transform under the fundamental representation of the spin group Spin(d) associated with the SO(d) rotation group (spin 1/2 fermions for d = 4). Since Chapter 7 was already devoted to perturbation theory and functional methods, the chapter outlines here only the aspects that are specific to fermions. As for the scalar field theory, it first calculates the gaussian integral, which corresponds to a free field theory. Then adding a source term to the action, the generating functional of correlation functions are obtained. The functional integral corresponding to a general action with an interaction expandable in powers of the field can be expressed in terms of a series of gaussian integrals, which can be calculated for example with the help of Wick's theorem.
Keywords: boson field theories, Dirac fermions, euclidean relativistic fermions, gaussian integral, functional integral
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Acknowledgments
- General References
- 1 Algebraic Preliminaries
- 2 Euclidean Path Integrals In Quantum Mechanics
- 3 Path Integrals In Quantum Mechanics: Generalizations
- 4 Stochastic Differential Equations: Langevin, Fokker–Planck Equations
- 5 Path And Functional Integrals In Quantum Statistical Physics
- 6 Quantum Evolution: From Particles To Fields
- 7 Quantum Field Theory: Functional Methods and Perturbation Theory
- 8 Relativistic Fermions
- 9 Quantum Field Theory: Divergences and Regularization
- 10 Introduction to Renormalization Theory. Renormalization Group Equations
- 11 Dimensional Regularization, Minimal Subtraction: RG Functions
- 12 Renormalization Of Composite Operators. Short Distance Expansion
- 13 Symmetries And Renormalization
- 14 The Non-Linear σ-Model: An Example Of a Non-Linear Symmetry
- 15 General Non-Linear Models In Two Dimensions
- 16 St And Brs Symmetries, Stochastic Field Equations
- 17 From Langevin Equation To Supersymmetry
- 18 Abelian Gauge Theories
- 19 Non-Abelian Gauge Theories: Introduction
- 20 The Standard Model. Anomalies
- 21 Gauge Theories: Master Equation And Renormalization
- 22 Classical And Quantum Gravity. Riemannian Manifolds And Tensors
- 23 Critical Phenomena: General Considerations
- 24 Mean Field Theory For Ferromagnetic Systems
- 25 General Renormalization Group. The Critical Theory Near Dimension Four
- 26 Scaling Behaviour In The Critical Domain
- 27 Corrections to Scaling Behaviour
- 28 Non-Magnetic Systems and The (φ<sup>2</sup>)<sup>2</sup> Field Theory
- 29 Calculation Of Universal Quantities
- 30 The <i>O</i>(<i>N</i>) Vector Model For <i>N</i> Large
- 31 Phase Transitions Near Two Dimensions
- 32 Two-Dimensional Models and Bosonization Method
- 33 The <i>O</i>(2) Classical Spin Model In Two Dimensions
- 34 Critical Properties Of Gauge Theories
- 35 Uv Fixed Points In Quantum Field Theory
- 36 Critical Dynamics
- 37 Field Theory in a Finite Geometry: Finite Size Scaling
- 38 Quantum Field Theory At Finite Temperature: Equilibrium Properties
- 39 Instantons In Quantum Mechanics
- 40 Unstable Vacua In Quantum Field Theory
- 41 Degenerate Classical Minima And Instantons
- 42 Perturbation Series At Large Orders. Summation Methods
- 43 Multi-Instantons In Quantum Mechanics
- Index