- Title Pages
- Dedication
- Contributors
- Abbreviations
- 1 Death and survival in the nervous system
- 2 Axotomy and mechanical damage
- 3 Metabolic damage
- 4 Inflammation and demyelination
- 5 Infection
- 6 Neurodegenerative disease
- 7 Neuroprotection
- 8 Steroids
- 9 Trophic factors
- 10 Control of inflammation
- 11 Peripheral nerve regeneration
- 12 Failure of CNS regeneration
- 13 Anatomical plasticity
- 14 Biochemical plasticity
- 15 Remyelination
- 16 Coma
- 17 Motor, sensory, and autonomic function
- 18 Cognition
- 19 Psychiatric assessment
- 20 Pharmacological management
- 21 Neuropsychological rehabilitation
- 22 Axon regeneration in the CNS
- 23 Primary neuronal transplantation
- 24 Glial transplantation
- 25 Stem cells
- 26 Gene therapy
- Appendix 1 Alzheimer's disease
- Appendix 2 Amyotrophic lateral sclerosis (ALS)/Motor neurone disease
- Appendix 3 Creutzfeldt-Jakob disease (CJD)
- Appendix 4 Epilepsy
- Appendix 5 Huntington's disease
- Appendix 6 Multiple sclerosis
- Appendix 7 Parkinson's disease
- Appendix 8 Spinal-cord injury
- Appendix 9 Stroke
- References
- Index
Biochemical plasticity
Biochemical plasticity
- Chapter:
- (p.196) 14 Biochemical plasticity
- Source:
- Brain Damage, Brain Repair
- Author(s):
James W. Fawcett
Anne E. Rosser
Stephen B. Dunnett
- Publisher:
- Oxford University Press
Many events can alter the neurotransmitter phenotype of central nervous system (CNS) neurones. For instance, most neurones down-regulate their neurotransmitters and the enzymes that make them after axotomy or other forms of damage. Neurotrophins tend to cause neurons to upregulate their neurotransmitter phenotype or even change it, and neurotrophins often prevent the downregulation of neurotransmitter phenotype after damage. There are so many examples of these types of behaviour that it would not be sensible in this book to try and detail them all. However, there are two particular experimental models in which neuroplasticity of this type has been analysed in detail, and this chapter describes them.
Keywords: central nervous system, neurones, neurotransmitter phenotype, axotomy, downregulation, neuroplasticity
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Dedication
- Contributors
- Abbreviations
- 1 Death and survival in the nervous system
- 2 Axotomy and mechanical damage
- 3 Metabolic damage
- 4 Inflammation and demyelination
- 5 Infection
- 6 Neurodegenerative disease
- 7 Neuroprotection
- 8 Steroids
- 9 Trophic factors
- 10 Control of inflammation
- 11 Peripheral nerve regeneration
- 12 Failure of CNS regeneration
- 13 Anatomical plasticity
- 14 Biochemical plasticity
- 15 Remyelination
- 16 Coma
- 17 Motor, sensory, and autonomic function
- 18 Cognition
- 19 Psychiatric assessment
- 20 Pharmacological management
- 21 Neuropsychological rehabilitation
- 22 Axon regeneration in the CNS
- 23 Primary neuronal transplantation
- 24 Glial transplantation
- 25 Stem cells
- 26 Gene therapy
- Appendix 1 Alzheimer's disease
- Appendix 2 Amyotrophic lateral sclerosis (ALS)/Motor neurone disease
- Appendix 3 Creutzfeldt-Jakob disease (CJD)
- Appendix 4 Epilepsy
- Appendix 5 Huntington's disease
- Appendix 6 Multiple sclerosis
- Appendix 7 Parkinson's disease
- Appendix 8 Spinal-cord injury
- Appendix 9 Stroke
- References
- Index