- Title Pages
- Preface
- Introduction
- Chapter 1 Better accuracy from simple pendulums
- Chapter 2 A short history of temperature compensation
- Chapter 3 Scaling the size of a pendulum
- Chapter 4 Finding a pendulum’s axis of rotation
- Chapter 5 Does a pendulum’s axis of rotation shift with amplitude?
- Chapter 6 Some practical properties of quartz
- Chapter 7 Putting Q in perspective
- Chapter 8 The Allan variance and the rms time error
- Chapter 9 Transient temperature effects in a pendulum
- Chapter 10 Transient response of a pendulum to temperature change
- Chapter 11 Dimensional stability of pendulum materials
- Chapter 12 Variations on a Riefler bob shape
- Chapter 13 Bob shape
- Chapter 14 Rate adjustment mechanisms
- Chapter 15 Spring suspensions for accurate pendulums
- Chapter 16 James’ suspension spring equations
- Chapter 17 Barometric compensation with a crossed spring suspension?
- Chapter 18 Solid one-piece suspension springs
- Chapter 19 Stable connections to a pendulum’s suspension spring
- Chapter 20 Stability of suspension spring materials
- Chapter 21 Pendulum rod materials
- Chapter 22 The heat treatment of invar
- Chapter 23 The instability of invar
- Chapter 24 Position sensitivity along the pendulum rod
- Chapter 25 Fasteners for quartz pendulum rods
- Chapter 26 Effect of the pendulum rod on Q
- Chapter 27 Correcting the pendulum’s air pressure error
- Chapter 28 Pendulum air movement: A failed experiment
- Chapter 29 Pendulum air movement: A second try
- Chapter 30 Time error due to air pressure variations
- Chapter 31 Effect of the clock case walls on a pendulum
- Chapter 32 An electronically driven pendulum
- Chapter 33 Sinusoidal drive of a pendulum
- Chapter 34 Photoelectronics for pendulums
- Chapter 35 Check your clock against WWV
- Chapter 36 Electronic correction for air pressure variations
- Conversion Table
- Index
Check your clock against WWV
Check your clock against WWV
- Chapter:
- (p.249) Chapter 35 Check your clock against WWV
- Source:
- Accurate Clock Pendulums
- Author(s):
Robert James Matthys
- Publisher:
- Oxford University Press
In the United States, WWV is the obvious time standard to check a clock against. WWV's claimed time accuracy as transmitted in Boulder, Colorado is 10 microseconds short term, and 1 second in 3,000 years long term. The received short-term accuracy is reduced to 0.001 second due to variations in the time signal's transit time. An exception is the better received short-term accuracy of 100 microseconds in WWV's 60-kHz ground wave signal, which can be improved even further to 10 microseconds by using proper averaging techniques. A shortwave radio receiver is needed to pick up the WWV signal. This chapter describes an electronic method of accurately comparing a clock's time against WWV's time.
Keywords: clock, WWV, accuracy, time standard, shortwave radio receiver, time signal, electronic method
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Introduction
- Chapter 1 Better accuracy from simple pendulums
- Chapter 2 A short history of temperature compensation
- Chapter 3 Scaling the size of a pendulum
- Chapter 4 Finding a pendulum’s axis of rotation
- Chapter 5 Does a pendulum’s axis of rotation shift with amplitude?
- Chapter 6 Some practical properties of quartz
- Chapter 7 Putting Q in perspective
- Chapter 8 The Allan variance and the rms time error
- Chapter 9 Transient temperature effects in a pendulum
- Chapter 10 Transient response of a pendulum to temperature change
- Chapter 11 Dimensional stability of pendulum materials
- Chapter 12 Variations on a Riefler bob shape
- Chapter 13 Bob shape
- Chapter 14 Rate adjustment mechanisms
- Chapter 15 Spring suspensions for accurate pendulums
- Chapter 16 James’ suspension spring equations
- Chapter 17 Barometric compensation with a crossed spring suspension?
- Chapter 18 Solid one-piece suspension springs
- Chapter 19 Stable connections to a pendulum’s suspension spring
- Chapter 20 Stability of suspension spring materials
- Chapter 21 Pendulum rod materials
- Chapter 22 The heat treatment of invar
- Chapter 23 The instability of invar
- Chapter 24 Position sensitivity along the pendulum rod
- Chapter 25 Fasteners for quartz pendulum rods
- Chapter 26 Effect of the pendulum rod on Q
- Chapter 27 Correcting the pendulum’s air pressure error
- Chapter 28 Pendulum air movement: A failed experiment
- Chapter 29 Pendulum air movement: A second try
- Chapter 30 Time error due to air pressure variations
- Chapter 31 Effect of the clock case walls on a pendulum
- Chapter 32 An electronically driven pendulum
- Chapter 33 Sinusoidal drive of a pendulum
- Chapter 34 Photoelectronics for pendulums
- Chapter 35 Check your clock against WWV
- Chapter 36 Electronic correction for air pressure variations
- Conversion Table
- Index