- Title Pages
- Preface
- Acknowledgements
- Contributors
- Abbreviations
- 1 The cytoskeleton of the squid giant axon
- 2 The nervous system of <i>Loligo pealei</i> provides multiple models for analysis of organelle motility
- 3 Cyclic nucleotide homeostasis and axonal G proteins in the squid <i>Loligo forbesi</i>
- 4 The detection and properties of electrogenic Na<sup>+</sup>–K<sup>+</sup> transport in the squid axon membrane
- 5 Resting And Active K<sup>+</sup> Channels In The Squid Axon Membrane
- 6 Studies of the kinetics of the ionic and gating currents in the axons of <i>Loligo forbesi</i> as a guide to modelling of the sodium channel
- 7 An improved voltage clamp for gating current recording from the squid giant axon
- 8 Voltage Dependence of Sodium Channel Inactivation In The Squid Giant Axon
- 9 Tetrodotoxin affects sodium gating current in squid giant axon
- 10 Single-channel properties and gating of Na<sup>+</sup> and K<sup>+</sup> channels in the squid giant axon
- 11 The effects of internal Ca<sup>2+</sup> and Mg<sup>2+</sup> on ion channels in the squid giant axon
- 12 Anaesthetics, Convulsants, And The Squid Axon Membrane
- 13 Control of the spatial distribution of sodium channels in the squid giant axon and its cell bodies
- 14 Electrophysiology of squid Schwann cells
- 15 The pharmacology of receptors present on squid giant axon Schwann cells
- 16 Periaxonal ion regulation in the squid
- 17 Synaptic transmission in the squid stellate ganglion
- 18 Multiple calcium signalling pathways in squid giant presynaptic terminals
- 19 Chemical transmission at the squid giant synapse
- 20 The structure and physiology of cephalopod muscle fibres
- 21 Organization of cephalopod chromatophore systems: a neuromuscular image-generator
- 22 Neurotransmitters of squid chromatophores
- 23 Diffusion properties of the microenvironment of cephalopod brain
- 24 Cephalopod brains: promising preparations for brain physiology
- 25 Intracellular recordings from the chromatophore lobes of <i>Octopus</i>
- 26 Multiple matrices in the memory system of <i>Octopus</i>
- 27 A novel occluding junction forms the blood–brain barrier in cephalopod molluscs
- 28 Cerebrovascular organization and dynamics in cephalopods
- 29 Squid rhodopsin
- 30 The firefly squid, <i>Watasenia scintillans</i>, has three visual pigments
- 31 The statocysts of cephalopods
- 32 Physiology of squid olfaction
- Index
Cerebrovascular organization and dynamics in cephalopods
Cerebrovascular organization and dynamics in cephalopods
- Chapter:
- (p.459) 28 Cerebrovascular organization and dynamics in cephalopods
- Source:
- Cephalopod Neurobiology
- Author(s):
N. Joan Abbott
J. A. Miyan
- Publisher:
- Oxford University Press
This chapter reviews the anatomy and physiology of the cerebral circulation in cephalopods, and its behaviour in experimental preparations. Cephalopods have a closed vasculature, and the arrangement of cerebral arteries, arterioles, capillaries, and veins follows a similar pattern to that of vertebrates, with some differences at the electron microscopic level. ‘Gliovascular’ channels may act as routes for flow of interstitial fluid while ‘lymphoid’ channels return the fluid to the venous system. Cephalopod molluscs are the only invertebrate animal group to possess a fully closed vascular system in which a substantial hydrostatic pressure is generated by the heart. However, the relative inefficiency of cephalopod haemocyanin compared with vertebrate haemoglobin as blood oxygen transport protein means that the cephalopod vascular system is forced to work close to its physiological limits. The cardiovascular specializations that are necessary to maintain tissue oxygen supply in cephalopods give instructive insights into basic principles of cardiovascular physiology. Cephalopod neural tissue, in common with neural tissues in most animal groups, maintains a high metabolic rate and a predominantly aerobic metabolism, requiring efficient supply of oxygen and aerobic substrates from the blood. Comparison of the vascularity of brain and non-brain tissues and study of regional differences within the brain can highlight important aspects of neural metabolism.
Keywords: Cephalopods, haemocyanin, cerebrovascular, neural tissue, aerobic metabolism, non-brain tissue
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Acknowledgements
- Contributors
- Abbreviations
- 1 The cytoskeleton of the squid giant axon
- 2 The nervous system of <i>Loligo pealei</i> provides multiple models for analysis of organelle motility
- 3 Cyclic nucleotide homeostasis and axonal G proteins in the squid <i>Loligo forbesi</i>
- 4 The detection and properties of electrogenic Na<sup>+</sup>–K<sup>+</sup> transport in the squid axon membrane
- 5 Resting And Active K<sup>+</sup> Channels In The Squid Axon Membrane
- 6 Studies of the kinetics of the ionic and gating currents in the axons of <i>Loligo forbesi</i> as a guide to modelling of the sodium channel
- 7 An improved voltage clamp for gating current recording from the squid giant axon
- 8 Voltage Dependence of Sodium Channel Inactivation In The Squid Giant Axon
- 9 Tetrodotoxin affects sodium gating current in squid giant axon
- 10 Single-channel properties and gating of Na<sup>+</sup> and K<sup>+</sup> channels in the squid giant axon
- 11 The effects of internal Ca<sup>2+</sup> and Mg<sup>2+</sup> on ion channels in the squid giant axon
- 12 Anaesthetics, Convulsants, And The Squid Axon Membrane
- 13 Control of the spatial distribution of sodium channels in the squid giant axon and its cell bodies
- 14 Electrophysiology of squid Schwann cells
- 15 The pharmacology of receptors present on squid giant axon Schwann cells
- 16 Periaxonal ion regulation in the squid
- 17 Synaptic transmission in the squid stellate ganglion
- 18 Multiple calcium signalling pathways in squid giant presynaptic terminals
- 19 Chemical transmission at the squid giant synapse
- 20 The structure and physiology of cephalopod muscle fibres
- 21 Organization of cephalopod chromatophore systems: a neuromuscular image-generator
- 22 Neurotransmitters of squid chromatophores
- 23 Diffusion properties of the microenvironment of cephalopod brain
- 24 Cephalopod brains: promising preparations for brain physiology
- 25 Intracellular recordings from the chromatophore lobes of <i>Octopus</i>
- 26 Multiple matrices in the memory system of <i>Octopus</i>
- 27 A novel occluding junction forms the blood–brain barrier in cephalopod molluscs
- 28 Cerebrovascular organization and dynamics in cephalopods
- 29 Squid rhodopsin
- 30 The firefly squid, <i>Watasenia scintillans</i>, has three visual pigments
- 31 The statocysts of cephalopods
- 32 Physiology of squid olfaction
- Index