- Title Pages
- Preface
- Acknowledgements
- Contributors
- Abbreviations
- 1 The cytoskeleton of the squid giant axon
- 2 The nervous system of <i>Loligo pealei</i> provides multiple models for analysis of organelle motility
- 3 Cyclic nucleotide homeostasis and axonal G proteins in the squid <i>Loligo forbesi</i>
- 4 The detection and properties of electrogenic Na<sup>+</sup>–K<sup>+</sup> transport in the squid axon membrane
- 5 Resting And Active K<sup>+</sup> Channels In The Squid Axon Membrane
- 6 Studies of the kinetics of the ionic and gating currents in the axons of <i>Loligo forbesi</i> as a guide to modelling of the sodium channel
- 7 An improved voltage clamp for gating current recording from the squid giant axon
- 8 Voltage Dependence of Sodium Channel Inactivation In The Squid Giant Axon
- 9 Tetrodotoxin affects sodium gating current in squid giant axon
- 10 Single-channel properties and gating of Na<sup>+</sup> and K<sup>+</sup> channels in the squid giant axon
- 11 The effects of internal Ca<sup>2+</sup> and Mg<sup>2+</sup> on ion channels in the squid giant axon
- 12 Anaesthetics, Convulsants, And The Squid Axon Membrane
- 13 Control of the spatial distribution of sodium channels in the squid giant axon and its cell bodies
- 14 Electrophysiology of squid Schwann cells
- 15 The pharmacology of receptors present on squid giant axon Schwann cells
- 16 Periaxonal ion regulation in the squid
- 17 Synaptic transmission in the squid stellate ganglion
- 18 Multiple calcium signalling pathways in squid giant presynaptic terminals
- 19 Chemical transmission at the squid giant synapse
- 20 The structure and physiology of cephalopod muscle fibres
- 21 Organization of cephalopod chromatophore systems: a neuromuscular image-generator
- 22 Neurotransmitters of squid chromatophores
- 23 Diffusion properties of the microenvironment of cephalopod brain
- 24 Cephalopod brains: promising preparations for brain physiology
- 25 Intracellular recordings from the chromatophore lobes of <i>Octopus</i>
- 26 Multiple matrices in the memory system of <i>Octopus</i>
- 27 A novel occluding junction forms the blood–brain barrier in cephalopod molluscs
- 28 Cerebrovascular organization and dynamics in cephalopods
- 29 Squid rhodopsin
- 30 The firefly squid, <i>Watasenia scintillans</i>, has three visual pigments
- 31 The statocysts of cephalopods
- 32 Physiology of squid olfaction
- Index
Resting And Active K+ Channels In The Squid Axon Membrane
Resting And Active K+ Channels In The Squid Axon Membrane
- Chapter:
- (p.73) 5 Resting And Active K+ Channels In The Squid Axon Membrane
- Source:
- Cephalopod Neurobiology
- Author(s):
Isao Inoue
- Publisher:
- Oxford University Press
This chapter shows that the potassium conductance g K of the membrane of the squid Sepioteuthis lessoniana can be separated into two components using a pharmacological tool, cytochalasin B. The delayed rectifier of the squid axon membrane was the first K+ channel to be studied extensively, and its time- and voltage-dependent characteristics and pharmacological properties were the first to be described. This channel was considered to be involved in the generation of both spike and resting potentials However, since the introduction of the patch-clamp technique (Neher and Sakmann), many different types of K+ channels have been identified in a range of cell types, and it is now clear that many of these channels are specialized for particular cell functions. This has led us to the idea that the delayed rectifier K+ channel which is responsible for the highly sophisticated function of excitable cells may be separate from the K+ channel responsible for the generation of the resting potential, a much more widespread cellular phenomenon. This idea agrees with observations of multiple types of K+ channels in the squid axon membrane obtained with patch clamp. The results from the experiments in the chapter indicate that a certain type of K+ channel might exist in the living cells more generally, and may play a role in generation of the steady-state membrane potential and conductance.
Keywords: Sepioteuthis lessoniana, cytochalasin, K+ channels, membrane potential, patch-clamp technique, steady-state membrane
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Acknowledgements
- Contributors
- Abbreviations
- 1 The cytoskeleton of the squid giant axon
- 2 The nervous system of <i>Loligo pealei</i> provides multiple models for analysis of organelle motility
- 3 Cyclic nucleotide homeostasis and axonal G proteins in the squid <i>Loligo forbesi</i>
- 4 The detection and properties of electrogenic Na<sup>+</sup>–K<sup>+</sup> transport in the squid axon membrane
- 5 Resting And Active K<sup>+</sup> Channels In The Squid Axon Membrane
- 6 Studies of the kinetics of the ionic and gating currents in the axons of <i>Loligo forbesi</i> as a guide to modelling of the sodium channel
- 7 An improved voltage clamp for gating current recording from the squid giant axon
- 8 Voltage Dependence of Sodium Channel Inactivation In The Squid Giant Axon
- 9 Tetrodotoxin affects sodium gating current in squid giant axon
- 10 Single-channel properties and gating of Na<sup>+</sup> and K<sup>+</sup> channels in the squid giant axon
- 11 The effects of internal Ca<sup>2+</sup> and Mg<sup>2+</sup> on ion channels in the squid giant axon
- 12 Anaesthetics, Convulsants, And The Squid Axon Membrane
- 13 Control of the spatial distribution of sodium channels in the squid giant axon and its cell bodies
- 14 Electrophysiology of squid Schwann cells
- 15 The pharmacology of receptors present on squid giant axon Schwann cells
- 16 Periaxonal ion regulation in the squid
- 17 Synaptic transmission in the squid stellate ganglion
- 18 Multiple calcium signalling pathways in squid giant presynaptic terminals
- 19 Chemical transmission at the squid giant synapse
- 20 The structure and physiology of cephalopod muscle fibres
- 21 Organization of cephalopod chromatophore systems: a neuromuscular image-generator
- 22 Neurotransmitters of squid chromatophores
- 23 Diffusion properties of the microenvironment of cephalopod brain
- 24 Cephalopod brains: promising preparations for brain physiology
- 25 Intracellular recordings from the chromatophore lobes of <i>Octopus</i>
- 26 Multiple matrices in the memory system of <i>Octopus</i>
- 27 A novel occluding junction forms the blood–brain barrier in cephalopod molluscs
- 28 Cerebrovascular organization and dynamics in cephalopods
- 29 Squid rhodopsin
- 30 The firefly squid, <i>Watasenia scintillans</i>, has three visual pigments
- 31 The statocysts of cephalopods
- 32 Physiology of squid olfaction
- Index