Sasakian Geometry
Charles Boyer and Krzysztof Galicki
Abstract
Sasakian manifolds were first introduced in 1962. This book's main focus is on the intricate relationship between Sasakian and Kähler geometries, especially when the Kähler structure is that of an algebraic variety. The book is divided into three parts. The first five chapters carefully prepare the stage for the proper introduction of the subject. After a brief discussion of G-structures, the reader is introduced to the theory of Riemannian foliations. A concise review of complex and Kähler geometry precedes a fairly detailed treatment of compact complex Kähler orbifolds. A discussion of the e ... More
Sasakian manifolds were first introduced in 1962. This book's main focus is on the intricate relationship between Sasakian and Kähler geometries, especially when the Kähler structure is that of an algebraic variety. The book is divided into three parts. The first five chapters carefully prepare the stage for the proper introduction of the subject. After a brief discussion of G-structures, the reader is introduced to the theory of Riemannian foliations. A concise review of complex and Kähler geometry precedes a fairly detailed treatment of compact complex Kähler orbifolds. A discussion of the existence and obstruction theory of Kähler-Einstein metrics (Monge-Ampère problem) on complex compact orbifolds follows. The second part gives a careful discussion of contact structures in the Riemannian setting. Compact quasi-regular Sasakian manifolds emerge here as algebraic objects: they are orbifold circle bundles over compact projective algebraic orbifolds. After a discussion of symmetries of Sasakian manifolds in Chapter 8, the book looks at Sasakian structures on links of isolated hypersurface singularities in Chapter 9. What follows is a study of compact Sasakian manifolds in dimensions three and five focusing on the important notion of positivity. The latter is crucial in understanding the existence of Sasaki-Einstein and 3-Sasakian metrics, which are studied in Chapters 11 and 13. Chapter 12 gives a fairly brief description of quaternionic geometry which is a prerequisite for Chapter 13. The study of Sasaki-Einstein geometry was the original motivation for the book. The final chapter on Killing spinors discusses the properties of Sasaki-Einstein manifolds, which allow them to play an important role as certain models in the supersymmetric field theories of theoretical physics.
Keywords:
algebraic varieties,
contact structures,
complex structures,
foliations,
Kähler geometry,
Kähler-Einstein metrics,
Killing spinors,
Monge-Ampère problem,
orbifolds,
orbibundles
Bibliographic Information
Print publication date: 2007 |
Print ISBN-13: 9780198564959 |
Published to Oxford Scholarship Online: January 2008 |
DOI:10.1093/acprof:oso/9780198564959.001.0001 |
Authors
Affiliations are at time of print publication.
Charles Boyer, author
University of New Mexico
Krzysztof Galicki, author
University of New Mexico
More
Less