Biostatistics: the near future
Biostatistics: the near future
This chapter reviews the biomedical and public health developments that will influence biostatistical research and practice in the near future, such as advances in molecular biology, and measuring DNA sequences and gene and protein expression levels. It is argued that the success of biostatistics will derive largely from a model-based approach, which uses and applies the principle of conditioning. Statistical models and inferences that are central to this model-based approach are described and contrasted with computationally-intensive strategies and a design-based approach. Increasingly complex models, different sources of uncertainty, and clustered observational units are viewed as future challenges for the model-based approach. Causal inference and statistical computing are discussed as topics believed to be central to biostatistics in the near future.
Keywords: bioinformatics, causal inference, conditional inference, genomic data, model complexity, multi-level models, nuisance parameters, statistical efficiency, statistical computing
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .