An Introduction to Model-Based Survey Sampling with Applications
Ray Chambers and Robert Clark
Abstract
This book is an introduction to the model-based approach to survey sampling. It consists of three parts, with Part I focusing on estimation of population totals. Chapters 1 and 2 introduce survey sampling, and the model-based approach, respectively. Chapter 3 considers the simplest possible model, the homogenous population model, which is then extended to stratified populations in Chapter 4. Chapter 5 discusses simple linear regression models for populations, and Chapter 6 considers clustered populations. The general linear population model is then used to integrate these results in Chapter 7. ... More
This book is an introduction to the model-based approach to survey sampling. It consists of three parts, with Part I focusing on estimation of population totals. Chapters 1 and 2 introduce survey sampling, and the model-based approach, respectively. Chapter 3 considers the simplest possible model, the homogenous population model, which is then extended to stratified populations in Chapter 4. Chapter 5 discusses simple linear regression models for populations, and Chapter 6 considers clustered populations. The general linear population model is then used to integrate these results in Chapter 7. Part II of this book considers the properties of estimators based on incorrectly specified models. Chapter 8 develops robust sample designs that lead to unbiased predictors under model misspecification, and shows how flexible modelling methods like non-parametric regression can be used in survey sampling. Chapter 9 extends this development to misspecfication robust prediction variance estimators and Chapter 10 completes Part II of the book with an exploration of outlier robust sample survey estimation. Chapters 11 to 17 constitute Part III of the book and show how model-based methods can be used in a variety of problem areas of modern survey sampling. They cover (in order) prediction of non-linear population quantities, sub-sampling approaches to prediction variance estimation, design and estimation for multipurpose surveys, prediction for domains, small area estimation, efficient prediction of population distribution functions and the use of transformations in survey inference. The book is designed to be accessible to undergraduate and graduate level students with a good grounding in statistics and applied survey statisticians seeking an introduction to model-based survey design and estimation.
Keywords:
model-based survey inference,
sample survey design,
survey estimation,
variance estimation,
linear models,
sample weights,
outlier robust estimation,
small area estimation,
distribution function estimation,
transformation-based inference
Bibliographic Information
Print publication date: 2012 |
Print ISBN-13: 9780198566625 |
Published to Oxford Scholarship Online: May 2012 |
DOI:10.1093/acprof:oso/9780198566625.001.0001 |
Authors
Affiliations are at time of print publication.
Ray Chambers, author
School of Mathematics and Applied Statistics, University of Wollongong, Australia
Robert Clark, author
School of Mathematics and Applied Statistics, University of Wollongong, Australia
More
Less