FOURIER ANALYSIS ON FINITE ABELIAN GROUPS: SOME GRAPHICAL APPLICATIONS
FOURIER ANALYSIS ON FINITE ABELIAN GROUPS: SOME GRAPHICAL APPLICATIONS
This article reviews basic techniques of Fourier analysis on a finite abelian group Q, with subsequent applications in graph theory. These include evaluations of the Tutte polynomial of a graph G in terms of cosets of the Q-flows of G. Other applications to spanning trees of Cayley graphs and to group-valued models on phylogenetic trees are also presented to illustrate methods.
Keywords: Fourier analysis, abelian groups, graph theory, Tutte polynomial, Cayley graphs, phylogenetic trees
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .