Jump to ContentJump to Main Navigation
Users without a subscription are not able to see the full content.

Greg Stuart, Nelson Spruston, and Michael Häusser

Print publication date: 2016

Print ISBN-13: 9780198745273

Published to Oxford Scholarship Online: May 2016

DOI: 10.1093/acprof:oso/9780198745273.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 18 January 2021

Principles of dendritic integration

Principles of dendritic integration

(p.351) Chapter 12 Principles of dendritic integration

Nelson Spruston

Greg Stuart

Michael Häusser

Oxford University Press

The primary role of neurons is to integrate incoming information conveyed by synaptic input and convert it into an output, usually in the form of action potentials. This process is called synaptic integration. As the vast majority of synaptic input to neurons is made onto their dendrites, the morphology and membrane properties of dendrites play a critical role of this input–output transformation. This chapter discusses where action potentials are generated in neurons, as well as the various factors affecting how dendrites integrate synaptic potentials, highlighting the key role of dendritic excitability.

Keywords:   neurons, synaptic input, dendrites, input–output transformation, action potentials, synaptic integration

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .