- Title Pages
- Preface
- Acknowledgements
- Dedication
- 1 Introduction to conjugated polymers
- 2 <i>π</i>-electron theories of conjugated polymers
- 3 Noninteracting electrons
- 4 Electron-nuclear coupling I: Noninteracting electrons
- 5 Interacting electrons
- 6 Excitons in conjugated polymers
- 7 Electron-nuclear coupling II: Interacting electrons
- 8 Linear polyenes and <i>trans</i>-polyacetylene
- 9 Light emitting polymers
- 10 Exciton localization in disordered polymers
- 11 Optical processes in conjugated polymers
- 12 Excitonic processes in conjugated polymers
- 13 Epilogue
- Appendix ADirac bra-ket operator representation of one-particle Hamiltonians
- Appendix BElectron-hole symmetry and average occupation number
- Appendix CSingle-particle eigensolutions of a periodic polymer chain
- Appendix DThe Holstein model
- Appendix EDerivation of the effective-particle Schrödinger equation
- Appendix FHydrogenic solutions of the effective-particle exciton models
- Appendix GValence-bond description of benzene
- Appendix HDerivation of the Frenkel exciton Hamiltonian
- Appendix IEvaluation of the electronic transition dipole moments
- Appendix J Spin-orbit coupling in <i>π</i>-conjugated polymers
- Appendix KDerivation of the line dipole approximation
- Appendix LDirect configuration interaction-singles calculations for the Pariser-Parr-Pople model
- Appendix MDensity matrix renormalization group method
- Bibliography
- Index
Introduction to conjugated polymers
Introduction to conjugated polymers
- Chapter:
- (p.1) 1 Introduction to conjugated polymers
- Source:
- Electronic and Optical Properties of Conjugated Polymers
- Author(s):
William Barford
- Publisher:
- Oxford University Press
As an introduction to conjugated polymers, this chapter gives a brief summary of recent experimental and theoretical advances. It outlines the key challenges to understanding the electronic properties of conjugated polymers, namely electron-electron interactions, electron-nuclear coupling, and disorder. All of these effects are enhanced in one-dimensional systems.The chapter then gives a review of the rest of the book, emphazing the point that semi-empirical models of π‐conjugated systems give valuable insights to, as well as accurate predictions of, their electronic properties.
Keywords: conjugated polymers, electronic properties
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .
- Title Pages
- Preface
- Acknowledgements
- Dedication
- 1 Introduction to conjugated polymers
- 2 <i>π</i>-electron theories of conjugated polymers
- 3 Noninteracting electrons
- 4 Electron-nuclear coupling I: Noninteracting electrons
- 5 Interacting electrons
- 6 Excitons in conjugated polymers
- 7 Electron-nuclear coupling II: Interacting electrons
- 8 Linear polyenes and <i>trans</i>-polyacetylene
- 9 Light emitting polymers
- 10 Exciton localization in disordered polymers
- 11 Optical processes in conjugated polymers
- 12 Excitonic processes in conjugated polymers
- 13 Epilogue
- Appendix ADirac bra-ket operator representation of one-particle Hamiltonians
- Appendix BElectron-hole symmetry and average occupation number
- Appendix CSingle-particle eigensolutions of a periodic polymer chain
- Appendix DThe Holstein model
- Appendix EDerivation of the effective-particle Schrödinger equation
- Appendix FHydrogenic solutions of the effective-particle exciton models
- Appendix GValence-bond description of benzene
- Appendix HDerivation of the Frenkel exciton Hamiltonian
- Appendix IEvaluation of the electronic transition dipole moments
- Appendix J Spin-orbit coupling in <i>π</i>-conjugated polymers
- Appendix KDerivation of the line dipole approximation
- Appendix LDirect configuration interaction-singles calculations for the Pariser-Parr-Pople model
- Appendix MDensity matrix renormalization group method
- Bibliography
- Index