Jump to ContentJump to Main Navigation
Bayesian Statistics 9$
Users without a subscription are not able to see the full content.

José M. Bernardo, M. J. Bayarri, James O. Berger, A. P. Dawid, David Heckerman, Adrian F. M. Smith, and Mike West

Print publication date: 2011

Print ISBN-13: 9780199694587

Published to Oxford Scholarship Online: January 2012

DOI: 10.1093/acprof:oso/9780199694587.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 15 April 2021

Moment Priors for Bayesian Model Choice with Applications to Directed Acyclic Graphs *

Moment Priors for Bayesian Model Choice with Applications to Directed Acyclic Graphs *

(p.119) Moment Priors for Bayesian Model Choice with Applications to Directed Acyclic Graphs*
Bayesian Statistics 9

Guido Consonni

Luca La Rocca

Oxford University Press

We propose a new method for the objective comparison of two nested models based on non‐local priors. More specifically, starting with a default prior under each of the two models, we construct a moment prior under the larger model, and then use the fractional Bayes factor for a comparison. Non‐local priors have been recently introduced to obtain a better separation between nested models, thus accelerating the learning behaviour, relative to currently used local priors, when the smaller model holds. Although the argument showing the superior performance of non‐local priors is asymptotic, the improvement they produce is already apparent for small to moderate samples sizes, which makes them a useful and practical tool. As a by‐product, it turns out that routinely used objective methods, such as ordinary fractional Bayes factors, are alarmingly slow in learning that the smaller model holds. On the downside, when the larger model holds, non‐local priors exhibit a weaker discriminatory power against sampling distributions close to the smaller model. However, this drawback becomes rapidly negligible as the sample size grows, because the learning rate of the Bayes factor under the larger model is exponentially fast, whether one uses local or non‐local priors. We apply our methodology to directed acyclic graph models having a Gaussian distribution. Because of the recursive nature of the joint density, and the assumption of global parameter independence embodied in our prior, calculations need only be performed for individual vertices admitting a distinct parent structure under the two graphs; additionally we obtain closed‐form expressions as in the ordinary conjugate case. We provide illustrations of our method for a simple three‐variable case, as well as for a more elaborate seven‐variable situation. Although we concentrate on pairwise comparisons of nested models, our procedure can be implemented to carry‐out a search over the space of all models.

Keywords:   Fractional Bayes factor, Gaussian graphical model, Non‐local prior, Objective Bayes

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .