Bayesian model averaging in the M-open framework
Bayesian model averaging in the M-open framework
This chapter presents a model averaging approach in the M-open setting using sample re-use methods to approximate the predictive distribution of future observations. It first reviews the standard M-closed Bayesian Model Averaging approach and decision-theoretic methods for producing inferences and decisions. It then reviews model selection from the M-complete and M-open perspectives, before formulating a Bayesian solution to model averaging in the M-open perspective. It constructs optimal weights for MOMA:M-open Model Averaging using a decision-theoretic framework, where models are treated as part of the ‘action space’ rather than unknown states of nature. Using ‘incompatible’ retrospective and prospective models for data from a case-control study, the chapter demonstrates that MOMA gives better predictive accuracy than the proxy models. It concludes with open questions and future directions.
Keywords: multiple proxy models, M-open framework, Bayesian inference, model averaging
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .