Jump to ContentJump to Main Navigation
Bayesian Theory and Applications$
Users without a subscription are not able to see the full content.

Paul Damien, Petros Dellaportas, Nicholas G. Polson, and David A. Stephens

Print publication date: 2013

Print ISBN-13: 9780199695607

Published to Oxford Scholarship Online: May 2013

DOI: 10.1093/acprof:oso/9780199695607.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 22 April 2021

Surviving fully Bayesian nonparametric regression models

Surviving fully Bayesian nonparametric regression models

(p.593) 30 Surviving fully Bayesian nonparametric regression models
Bayesian Theory and Applications

Timothy E. Hanson

Alejandro Jara

Oxford University Press

This chapter compares two Bayesian nonparametric models that generalize the accelerated failure time model, based on recent work on probability models for predictor-dependent probability distributions. It begins by reviewing commonly used semiparametric survival models. It then discusses the Bayesian nonparametric priors used in the generalizations of the accelerated failure time (AFT) model. Next, the two generalizations of the accelerated failure time model are introduced and compared by means of real-life data analyses. The models correspond to generalizations of AFT models based on dependent extensions of the Dirichlet process (DP) and Polya tree (PT) priors. Advantages of the induced survival regression models include ease of interpretability and computational tractability.

Keywords:   Bayesian nonparametric models, accelerated failure time model, semiparametric survival models, Dirichlet process, Polya tree, induced survival regression models

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .