Jump to ContentJump to Main Navigation
Schelling's Game TheoryHow to Make Decisions$
Users without a subscription are not able to see the full content.

Robert V. Dodge

Print publication date: 2012

Print ISBN-13: 9780199857203

Published to Oxford Scholarship Online: May 2012

DOI: 10.1093/acprof:oso/9780199857203.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 13 June 2021

Collective Choice and Voting

Collective Choice and Voting

Chapter:
(p.169) Chapter 15 Collective Choice and Voting
Source:
Schelling's Game Theory
Author(s):

ROBERT V. DODGE

Publisher:
Oxford University Press
DOI:10.1093/acprof:oso/9780199857203.003.0015

This chapter begins with a brief voting discussion and then presents a problem and explanation from Schelling's course. It looks at sincere and strategic voting, the idea of a secret ballot, selling votes, and various characteristics involved in voting systems. Arrow's Impossibility Theorem describes Arrow's proof that no system could achieve four reasonable election goals. “Designing voting schemes” presents a Schelling problem where results depend on the voting strategy applied. The idea of cyclical choices concerns several options where preferences among them vary. Voting trees are introduced for strategic choices. The Condorcet option contends when there are several choices, any voting system selected should choose what the majority would choose if compared with another. In the positive majority sequential voting scheme, the first candidate is paired against the second and the winner is paired against the third, and so on. That leads to the idea of efficient voting outcomes, where no alternative outcome is unanimously preferred to the actual results. Lastly, the chapter considers the median voter theorem when voters are spread across a broad conservative-liberal continuum. This holds the candidate that wins the voter at the median wins the election. Supplementing the chapter is an article by Thomas L. Friedman “Hoping for Arab Mandelas.”

Keywords:   sincere choice, Arrow's Impossibility Theorem, Condorcet option, median voter theorem, voting schemes, strategic voting

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .