Jump to ContentJump to Main Navigation
PyriteA Natural History of Fool's Gold$
Users without a subscription are not able to see the full content.

David Rickard

Print publication date: 2015

Print ISBN-13: 9780190203672

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780190203672.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 05 December 2021

Pyrite and the Global Environment

Pyrite and the Global Environment

(p.203) 8 Pyrite and the Global Environment

David Rickard

Oxford University Press

The two basic processes concerning pyrite in the environment are the formation of pyrite, which usually involves reduction of sulfate to sulfide, and the destruction of pyrite, which usually involves oxidation of sulfide to sulfate. On an ideal planet these two processes might be exactly balanced. But pyrite is buried in sediments sometimes for hundreds of millions of years, and the sulfur in this buried pyrite is removed from the system, so the balance is disturbed. The lack of balance between sulfide oxidation and sulfate reduction powers a global dynamic cycle for sulfur. This would be complex enough if this were the whole story. However, as we have seen, both the reduction and oxidation arms of the global cycle are essentially biological—specifically microbiological—processes. This means that there is an intrinsic link between the sulfur cycle and life on Earth. In this chapter, we examine the central role that pyrite plays, and has played, in determining the surface environment of the planet. In doing so we reveal how pyrite, the humble iron sulfide mineral, is a key component of maintaining and developing life on Earth. In Chapter 4 we concluded that Mother Nature must be particularly fond of pyrite framboids: a thousand billion of these microscopic raspberry-like spheres are formed in sediments every second. If we translate this into sulfur production, some 60 million tons of sulfur is buried as pyrite in sediments each year. But this is only a fraction of the total amount of sulfide produced every year by sulfate-reducing bacteria. In 1982 the Danish geomicrobiologist Bo Barker Jørgensen discovered that as much as 90% of the sulfide produced by sulfate-reducing bacteria was rapidly reoxidized by sulfur-oxidizing microorganisms. Sulfate-reducing microorganisms actually produce about 300 million tons of sulfur each year, but about 240 million tons is reoxidized. The magnitude of the sulfide production by sulfate-reducing bacteria can be appreciated by comparison with the sulfur produced by volcanoes. As discussed in Chapter 5, it was previously supposed that all sulfur, and thus pyrite, had a volcanic origin. In fact volcanoes produce just 10 million tons of sulfur each year.

Keywords:   Challenger expedition, Devonian, Ordovician, Silurian, evolution of life and pyrite, oceanic dead zones, origins of life, pyrite isotopes, sulfur dioxide (SO2)

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .