Jump to ContentJump to Main Navigation
PyriteA Natural History of Fool's Gold$
Users without a subscription are not able to see the full content.

David Rickard

Print publication date: 2015

Print ISBN-13: 9780190203672

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780190203672.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 28 October 2021

Pyrite and the Origins of Life

Pyrite and the Origins of Life

(p.229) 9 Pyrite and the Origins of Life

David Rickard

Oxford University Press

If you have been reading this book since the beginning, you will not be surprised by now to find that you have come across a chapter documenting the involvement of pyrite in the origin of life. This is because you will have read in this book how pyrite has been at the root of many fundamental discoveries about the nature of our world. So you do not suffer more than eyebrow-raising surprise and maybe a gentle throat-clearing in learning that pyrite is contributing to our current understanding of the origins of life. By contrast, if you have dived in at Chapter 9 you probably look at the title of this chapter with disbelief. After all, what could be the connection between a common glitzy mineral and the origin of life? The more diligent reader will have already learned that pyrite formation is intimately associated with biology because most of it is produced by bacteria that extract their oxygen from sulfate and produce hydrogen sulfide. This relationship is so overweening today that pyrite formation controls many fundamental aspects of the Earth’s environment. So what happens if we extend this line of inquiry back to the beginnings of geologic time? We have already seen that the characteristics of ancient pyrite are one of the main sources of information about the nature of the early Earth. The consequence of this is that we know quite a bit about the relationship between pyrite and early life on Earth. In this chapter, we further explore this and review the laboratory work that implicates pyrite itself in the original syntheses of the self-replicating biomolecules that assembled to produce Earth’s first life forms. The thesis that life developed from nonbiological chemistry is a very old idea stretching back through Anaximander in 6th-century BCE Greece to the Vedic writings of ancient India around 1500 BCE and is often called abiogenesis.

Keywords:   Anaximander, ustralian Geological Survey, Hell, Pyritosphaera barbaria, Pyritosphaera polygona, X-ray diffraction, abiogenesis, carbon isotopes, iron sulfide, radiogenic isotopes, stromatolites, syngenesis

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .