Jump to ContentJump to Main Navigation
The Chemistry of Soils$
Users without a subscription are not able to see the full content.

Garrison Sposito

Print publication date: 2016

Print ISBN-13: 9780190630881

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780190630881.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 07 May 2021

Soil Adsorption Phenomena

Soil Adsorption Phenomena

Chapter:
8 Soil Adsorption Phenomena
Source:
The Chemistry of Soils
Author(s):

Garrison Sposito

Publisher:
Oxford University Press
DOI:10.1093/oso/9780190630881.003.0012

Adsorption experiments involving soil particles typically are performed in a sequence of three steps: (1) reactio of an adsorptive (ion or molecule) with a soil contacting an aqueous solution of known composition under controlled temperature and applied pressure for a prescribed period of time, (2) separationof the wet soil slurry from the supernatant aqueous solution, and (3) quantitationof the ion or molecule of interest, both in the aqueous solution and in the separated soil slurry along with its entrained soil solution. The reaction step can be performed in either a closed system (batch reactor) or an open system (flow-through reactor), and it can proceed over a time period that is either relatively short (to investigate adsorption kinetics) or very long (to investigate adsorption equilibration). The separation step is similarly open to choice, with centrifugation, filtration, or gravitational settling being conventional methods to achieve separation. The quantitation step, in principle, should be designed not only to determine the moles of adsorbate and unreacted adsorptive, but also to verify whether unwanted side reactions, such as precipitation of the adsorptive or dissolution of the adsorbent, have influenced the experiment. After reaction between an adsorptive i and a soil adsorbent, the moles of i adsorbed per kilogram of dry soil is calculated with the standard equation ni ≡ niT − Mwmi where niT is the total moles of species i per kilogram dry soil in a slurry (batch process) or a soil column (flow-through process), Mw is the gravimetric water content of the slurry or soil column (measured in kilograms water per kilogram dry soil), and mi is the molality (moles per kilogram water) of species i in the supernatant solution (batch process) or effluent solution (flow-through process). Equation 8.1 defines the surface exces, ni, of an ion or molecule adsorptive that has become an adsorbate. Formally, ni is the excess number of moles of i per kilogram soil relative to its molality in the supernatant solution. As mentioned in Section 7.2, this surface excess may be a positive, zero, or negative quantity.

Keywords:   Langmuir equation, Marcus process, adsorption edge, boron adsorption, distribution coefficient, exclusion volume, ferrihydrite, ligand exchange, metal cation adsorption, molality, negative adsorption

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .