Jump to ContentJump to Main Navigation
Metal Forming and the Finite-Element Method$
Users without a subscription are not able to see the full content.

Shiro Kobayashi, Soo-Ik Oh, and Taylan Altan

Print publication date: 1989

Print ISBN-13: 9780195044027

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195044027.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 19 January 2022

Axisymmetric Isothermal Forging

Axisymmetric Isothermal Forging

9 (p.151) Axisymmetric Isothermal Forging
Metal Forming and the Finite-Element Method

Shiro Kobayashi

Soo-Ik Oh

Taylan Altan

Oxford University Press

According to Spies, the majority of forgings can be classified into three main groups. The first group consists of compact shapes that have approximately the same dimensions in all three directions. The second group consists of disk shapes that have two of the three dimensions (length and width) approximately equal and larger than the height. The third group consists of the long shapes that have one main dimension significantly larger than the two others. All axially symmetric forgings belong to the second group, which includes approximately 30% of all commonly used forgings. A basic axisymmetric forging process is compression of cylinders. It is a relatively simple operation and thus it is often used as a property test and as a preforming operation in hot and cold forging. The apparent simplicity, however, turns into a complex deformation when friction is present at the die–workpiece interface. With the finite-element method, this complex deformation mode can be examined in detail. In this chapter, compression of cylinders and related forming operations are discussed. Since friction at the tool–workpiece interface is an important factor in the analysis of metal-forming processes, this aspect is also given particular consideration. Further, applications of the FEM method for complex-shaped dies are shown in the examples of forging and cabbaging. Finite-element discretization with a quadrilateral element is similar to that given in Chap. 8. The cylindrical coordinate system (r, ϑ, z) is used instead of the rectangular coordinate system. The element is a ring element with a quadrilateral cross-section, as shown in Fig. 9.1. The ξ and η of the natural coordinate system vary from −1 to 1 within each element.

Keywords:   Axisymmetric isothermal forging, Cabbaging, Flashless forging, Gear blank forging, Heading of cylindrical bars, Ring compression, Strain-rate vector

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .