Jump to ContentJump to Main Navigation
Anisotropic ElasticityTheory and Applications$
Users without a subscription are not able to see the full content.

T. T. C. Ting

Print publication date: 1996

Print ISBN-13: 9780195074475

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195074475.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 21 June 2021

Linear Anisotropic Elastic Materials

Linear Anisotropic Elastic Materials

Chapter:
(p.32) Chapter 2 Linear Anisotropic Elastic Materials
Source:
Anisotropic Elasticity
Author(s):

T. C. T. Ting

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195074475.003.0005

The relations between stresses and strains in an anisotropic elastic material are presented in this chapter. A linear anisotropic elastic material can have as many as 21 elastic constants. This number is reduced when the material possesses a certain material symmetry. The number of elastic constants is also reduced, in most cases, when a two-dimensional deformation is considered. An important condition on elastic constants is that the strain energy must be positive. This condition implies that the 6×6 matrices of elastic constants presented herein must be positive definite. Referring to a fixed rectangular coordinate system x1, x2, x3, let σij and εks be the stress and strain, respectively, in an anisotropic elastic material. The stress-strain law can be written as . . . σij = Cijksεks . . . . . .(2.1-1). . . in which Cijks are the elastic stiffnesses which are components of a fourth rank tensor. They satisfy the full symmetry conditions . . . Cijks = Cjiks, Cijks = Cijsk, Cijks = Cksij. . . . . . .(2.1-2). . .

Keywords:   acoustic tensor, central inversion, displacements, elastic stiffnesses, hexagonal materials, invariants, material symmetry, orthotropic materials, reflection symmetry, shear modulus

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .