Summary of Elements of Algebraic Theory
Summary of Elements of Algebraic Theory
Algebraic theory makes use of an algebraic structure. The structure appropriate to ordinary quantum mechanical problems is that of a Lie algebra. We begin this chapter with a brief review of the essential concepts of Lie algebras. The binary operation (“multiplication”) in the Lie algebra is that of taking the commutator. As usual, we denote the commutator by square brackets, [A, B] = AB - BA. A set of operators {X} is a Lie algebra when it is closed under commutation.
Keywords: anharmonicity, boson operators, commutator, dipole operator, electrical anharmonicities, generators, harmonic limit, invariant operators, line strength, missing labels
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .