Jump to ContentJump to Main Navigation
Biophysics of ComputationInformation Processing in Single Neurons$
Users without a subscription are not able to see the full content.

Christof Koch

Print publication date: 1998

Print ISBN-13: 9780195104912

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195104912.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 23 October 2021

The Hodgkin-Huxley Model Of Action Potential Generation

The Hodgkin-Huxley Model Of Action Potential Generation

Chapter:
(p.142) 6 The Hodgkin-Huxley Model Of Action Potential Generation
Source:
Biophysics of Computation
Author(s):

Christof Koch

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195139853.003.0012

The vast majority of nerve cells generate a series of brief voltage pulses in response to vigorous input. These pulses, also referred to as action potentials or spikes, originate at or close to the cell body, and propagate down the axon at constant velocity and amplitude. Fig. 6.1 shows the shape of the action potential from a number of different neuronal and nonneuronal preparations. Action potentials come in a variety of shapes; common to all is the all-or-none depolarization of the membrane beyond 0. That is, if the voltage fails to exceed a particular threshold value, no spike is initiated and the potential returns to its baseline level. If the voltage threshold is exceeded, the membrane executes a stereotyped voltage trajectory that reflects membrane properties and not the input. As evident in Fig. 6.1, the shape of the action potential can vary enormously from cell type to cell type. When inserting an electrode into a brain, the small all-or-none electrical events one observes extracellularly are usually due to spikes that are initiated close to the cell body and that propagate along the axons. When measuring the electrical potential across the membrane, these spikes peak between +10 and +30 mV and are over (depending on the temperature) within 1 or 2 msec. Other all-or-none events, such as the complex spikes in cerebellar Purkinje cells or bursting pyramidal cells in cortex, show a more complex wave form with one or more fast spikes superimposed onto an underlying, much slower depolarization. Finally, under certain conditions, the dendritic membrane can also generate all-or-none events that are much slower than somatic spikes, usually on the order to 50-100 msec or longer. We will treat these events and their possible significance in Chap. 19. Only a small fraction of all neurons is unable—under physiological conditions—to generate action potentials, making exclusive use of graded signals. Examples of such nonspiking cells, usually spatially compact, can be found in the distal retina (e.g., bipolar, horizontal, and certain types of amacrine cells) and many neurons in the sensory-motor pathway of invertebrates (Roberts and Bush, 1981).

Keywords:   Absolute refractory period, Current input, Delayed rectifier, Gating particles, Hopf bifurcation, Impedance matching, Linearization, Membrane resistance, Nonspiking cells, Oligodendrocytes

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .