Jump to ContentJump to Main Navigation
Windows into the EarthThe Geologic Story of Yellowstone and Grand Teton National Parks$
Users without a subscription are not able to see the full content.

Robert B. Smith and Lee J. Siegel

Print publication date: 2000

Print ISBN-13: 9780195105964

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195105964.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 20 June 2021

Future Disasters

Future Disasters

(p.133) 7 Future Disasters
Windows into the Earth

Robert B. Smith

Lee J. Siegel

Oxford University Press

In 1870, the fall before Ferdinand Hayden’s celebrated exploration of Yellowstone, an Army lieutenant named Gustavus C. Doane guided a small troop into the mysterious high country. Unlike Hayden, Doane did not conduct extensive scientific studies. However, Doane was observant. He said of Yellowstone: . . . As a country for sight seers, it is without parallel. As a field for scientific research it promises great results, in the branches of Geology, Mineralogy, Botany, Zoology, and Ornithology. It is probably the greatest laboratory that nature furnishes on the surface of the globe. . . . Yellowstone’s value as a unique ecological region soon gained recognition when in 1872, it was designated as the first national park in the United States—and in the world. The complex relationships among Yellowstone’s fauna, flora, and geology helped inspire America’s budding conservation ethic, which came to fruition only a century later with widespread recognition of the tenuous interdependence of living organisms and the Earth they occupy. The idea of a greater Yellowstone ecosystem recognized that its living and geological wonders extended beyond the park’s boundaries and into a broader area. The greater Yellowstone ecosystem is defined by the subterranean yet dominant presence of the Yellowstone hotspot, the engine that ultimately drives not only the region’s geology, but also its living organisms. The Rocky Mountains, lifted upward tens of millions of years ago, were pushed perhaps 1,700 feet higher at Yellowstone during the past 2 million years by the upward-bulging hotspot. Today, a line drawn at 6,100 feet elevation roughly demarcates the boundaries of the greater Yellowstone ecosystem. The high altitude is critical in creating the temperature and moisture regimes that gave rise to Yellowstone’s biological wonders and now determine the distribution of its plants and wildlife. In addition, the incredible amount of heat rising from the hotspot is responsible for Yellowstone’s history of volcanism and its geysers and hot springs, rich with exotic microbes that branched off the evolutionary tree at a primitive stage of life on Earth. Yelllowstone’s expansive lodgepole pine forests demonstrate the interaction of the park’s biology and geology. They grow well on rhyolite lava flows that cover most of western and central Yellowstone.

Keywords:   Beaverhead fault, Cache Creek, East Gallatin fault, Firehole River, Global famine, Hebgen Lake fault, Jackson Lake Dam, Lassen Peak, Mary Bay, Neodymium

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .