Jump to ContentJump to Main Navigation
Principles of Stable Isotope Distribution$
Users without a subscription are not able to see the full content.

Robert E. Criss

Print publication date: 1999

Print ISBN-13: 9780195117752

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195117752.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 June 2021

Nonequilibrium Fractionation and Isotopic Transport

Nonequilibrium Fractionation and Isotopic Transport

Chapter:
(p.139) 4 Nonequilibrium Fractionation and Isotopic Transport
Source:
Principles of Stable Isotope Distribution
Author(s):

Robert E. Criss

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195117752.003.0006

At the Earth's surface, isotopic disequilibrium is far more common than isotopic equilibrium. Although isotopic equilibrium is approached in certain instances, numerous constituents of the lithosphere, hydrosphere, atmosphere, and biosphere are simply not in mutual isotopic equilibrium. This condition is consistent with the complex and dynamic conditions typical of the Earth's surface, particularly the large material fluxes, the rapid changes in temperature, and the biological mediation of chemical systems. Fortunately, several aspects of isotopic disequilibrium may be understood in terms of elementary physical laws. For homogeneous phases such as gases or well-stirred liquids, or for cases where spatial gradients in isotopic contents are not of primary interest, then the principles of elementary kinetics can be applied. For cases where isotopic gradients are important, the laws of diffusion are applicable. If two phases are out of isotopic equilibrium, they will progressively tend to approach the equilibrium state with the passage of time. This phenomenon occurs by the process of isotopic exchange, and its rate may be understood by examining isotopic exchange reactions from the viewpoint of elementary kinetic theory. In particular, consider the generalized exchange reaction where A and B are two phases that share a common major element, and A* and B* represent the same phases in which the trace isotope of that element is present. The present analysis is simplified if the exchange reaction is written so that only one atom is exchanged, in which case the stoichiometric coefficients are all unity. For reaction 4.1, kinetic principles assert that the forward and reverse reactions do not, in general, proceed at identical rates, but rather at the rates indicated by the quantities and k written by the arrows, multiplied by the appropriate concentrations terms. Assuming that the reaction is first order, then the reaction progress, represented by the quantity dA*/dt, may be expressed by the difference between these forward and reverse rates, as follows: In order to evaluate the exchange process more completely, is important to carefully chose a consistent set of concentrations for substitution equation 4.2.

Keywords:   Arrhenius law, Error function, Isotopic disequilibrium, Laplace equation, Marine vapors, Numerical integration, Planets, Snowpacks, Water vapor

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .