Jump to ContentJump to Main Navigation
Solute Movement in the Rhizosphere$
Users without a subscription are not able to see the full content.

Peter B. Tinker and Peter Nye

Print publication date: 2000

Print ISBN-13: 9780195124927

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195124927.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 17 January 2022

Chemical and Physical Modification of the Rhizosphere

Chemical and Physical Modification of the Rhizosphere

(p.156) 7 Chemical and Physical Modification of the Rhizosphere
Solute Movement in the Rhizosphere

Peter B. Tinker

Peter Nye

Oxford University Press

The term ‘rhizosphere’ tends to mean different things to different people. In discussing how a root affects the soil, it is well to bear in mind the spread of the zone being exploited for a particular solute: if this is wide, there may be no point in emphasizing effects close to the root; but if it is narrow, predictions based on the behaviour of the bulk soil may be wide of the mark. In a moist loam after 10 days, a simple non-adsorbed solute moves about 1 cm, but a strongly adsorbed one will move about 1 mm. In a dry soil, the spread may be an order of magnitude less. The modifications to the soil in the rhizosphere may be physical, chemical or microbiological. In this chapter, we discuss essentially non-living modifications, and in Chapter 8 the modifications that involve living organisms and their effects. Roots tend to follow pores and channels that are not much less, and are often larger, in diameter than their own. If the channels are larger, the roots are not randomly arranged in the void (Kooistra et al. 1992), but tend to be held against a soil surface by surface tension, and to follow the channel geotropically on the down-side. If the channels are smaller, good contact is assured, but the roots do not grow freely unless some soil is displaced as the root advances. For example, in winter wheat, Low (1972) cites minimum pore sizes of 390–450 μm for primary seminal roots, 320–370 μm for primary laterals, 300–350 μm for secondary laterals, and 8–12 μm for root hairs, though some figures seem large. Whiteley & Dexter (1984) and Dexter (1986a, b, c) have studied the mechanics of root penetration in detail (section 9.3.5). It may compact and reorient the soil at the root surface. Greacen et al. (1968) found that wheat roots penetrating a uniform fine sand increased the density only from 1.4 to 1.5 close to the root; and a pea radicle, a comparatively large root, raised the density of a loam from 1.5 to 1.55.

Keywords:   Aluminium, Bicarbonate ions, Carbon dioxide, Diffusion coefficient, Heavy metals, Iron uptake, Maize, Nitrogen, Phosphorus uptake

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .