Jump to ContentJump to Main Navigation
Soil Water Dynamics$
Users without a subscription are not able to see the full content.

Arthur W. Warrick

Print publication date: 2003

Print ISBN-13: 9780195126051

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195126051.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 17 June 2021

Multidimensional Water Flow in Variably Saturated Soils

Multidimensional Water Flow in Variably Saturated Soils

Chapter:
6 Multidimensional Water Flow in Variably Saturated Soils
Source:
Soil Water Dynamics
Author(s):

Arthur W. Warrick

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195126051.003.0011

Chapters 4 and 5 dealt with one-dimensional rectilinear flow, with and without the effect of gravity. Now the focus is on multidimensional flow. We will refer to two- and three-dimensional flow based on the number of Cartesian coordinates necessary to describe the problem. For this convention, a point source emitting a volume of water per unit time results in a three-dimensional problem even if it can be described with a single spherical coordinate. Similarly, a line source would be two-dimensional even if it could be described with a single radial coordinate. A problem with axial symmetry will be termed a three-dimensional problem even when only a depth and radius are needed to describe the geometry. The pressure at a point source is undefined. But more generally, three-dimensional point sources refer to flow from finite-sized sources into a larger soil domain, such as infiltration from a small surface pond into the soil. Often, the soil domain can be taken as infinite in one or more directions. Also, a point sink can occur with flow to a sump or to a suction sampler. In two dimensions, the same types of example can be given, but we will refer to them as line sources or sinks. Practical interest in point sources includes analyses of surface or subsurface leaks and of trickle (drip) irrigation. The desirability of determining soil properties in situ has provided the impetus for a rigorous analysis of disctension and borehole infiltrometers. Also, environmental monitoring with suction cups or candles, pan lysimeters, and wicking devices all include convergent or divergent flow in multidimensions. There are some conceptual differences between line and point sources and one-dimensional sources. For discussion, consider water supplied at a constant matric potential into drier surroundings. For a one-dimensional source, the corresponding physical problem includes a planar source over an area large enough for “edge” effects to be negligible. For two dimensions, the source might be a long horizontal cylinder or a furrow of finite depth from which water flows. For three dimensions, the source could be a small orifice providing water at a finite rate or a small, shallow pond on the soil surface.

Keywords:   banded matrix, capillary length, disc tension infiltrometer, exponential integral, fingered flow, images, line source infiltration, matric flux potential, sorptivity

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .