Jump to ContentJump to Main Navigation
Evolutionary EcologyConcepts and Case Studies$
Users without a subscription are not able to see the full content.

Charles W. Fox, Derek A. Roff, and Daphne J. Fairbairn

Print publication date: 2001

Print ISBN-13: 9780195131543

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195131543.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 14 June 2021

Population Structure

Population Structure

Chapter:
(p.70) 6 Population Structure
Source:
Evolutionary Ecology
Author(s):

Leonard Nunney

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195131543.003.0010

Population structure is a ubiquitous feature of natural populations that has an important influence on evolutionary change. In the real world, populations are not homogenous units; instead, they develop an internal structure, created by the physical properties of the environment and the biological characteristics of the species (such as dispersal ability). However, our basic ecological and population genetic models generally ignore population structure and focus on randomly mating (panmictic) populations. Such structure can profoundly change the evolution of a population. In fact, the myriad of influences that population structure exerts can only be hinted at in a single chapter. Since an exhaustive review is not possible, I will focus on presenting the conceptual issues linking mathematical models of population structure to empirical studies. To do this, it is useful to recognize two different kinds of population structure that both reflect and influence evolutionary change. The first is genetic structure. This is defined as the nonrandom distribution of genotypes in space and time. Thus, genetic structure reflects the genetic differences that develop among the different components of one or more populations. The second is what I will call proximity structure, defined by the size and composition of the group of neighbors that influence an individual’s fitness. Fitness is commonly influenced by local intraspecific interactions. Perhaps the most obvious example is competition. When individuals compete for some resource, they don’t usually compete equally with every other member of the population; in general, they compete only with a few of the most proximate individuals. These two forms of population structure, genetic structure and proximity structure, provide a foundation for understanding why we have shifted away from viewing populations as homogenous units. For good reason, this is a theme that is explored in many of the other chapters in this book. Genetic structure can develop within a population over a single generation, generally either as a result of local family associations or as a result of spatial variation in selection. For example, limited seed dispersal results in genetic correlations among neighbors even in the face of long-distance pollen movement, due to the clustering of maternal half sibs.

Keywords:   Altruists, Coadaptation, Demes, Extinction, Frequency-dependent fitness, Genetic drift, Half-sib, Inbreeding, Kin selection, Metapopulation

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .