Jump to ContentJump to Main Navigation
Evolutionary EcologyConcepts and Case Studies$
Users without a subscription are not able to see the full content.

Charles W. Fox, Derek A. Roff, and Daphne J. Fairbairn

Print publication date: 2001

Print ISBN-13: 9780195131543

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195131543.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 20 October 2021

Evolutionary Conservation Biology

Evolutionary Conservation Biology

(p.371) 28 Evolutionary Conservation Biology
Evolutionary Ecology

Philip W. Hedrick

Oxford University Press

Conservation biology as a discipline focused on endangered species is young and dates only from the late 1970s. Although conservation of endangered species encompasses many different biological disciplines, including behavior, ecology, and genetics, evolutionary considerations always have been emphasized (e.g., Frankel and Soule 1981). Many of the applications of evolutionary concepts to conservation are ones related to genetic variation in small or subdivided populations. However, the critical status of many endangered species makes both more precision and more caution necessary than the general findings for evolutionary considerations. On the other hand, the dire situations of many endangered species often require recommendations to be made on less than adequate data. Overall, one can think of the evolutionary aspects of conservation biology as an applied aspect of the evolution of small populations with the important constraint that any conclusions or recommendations may influence the actual extinction of the populations or species under consideration. From this perspective, all of the factors that influence continuing evolution (i.e., selection, inbreeding, genetic drift, gene flow, and mutation; e.g., Hedrick 2000) are potentially important in conservation. The evolutionary issues of widest concern in conservation biology’”inbreeding depression and maintenance of genetic variation’” can be seen in their simplest form as the joint effects of inbreeding and selection, and of genetic drift and mutation, respectively. However, even in model organisms such as Drosophila, the basis of inbreeding depression and the maintenance of genetic variation are not clearly understood. In addition, findings from model laboratory organisms may not provide good insight into problems in many endangered species, the most visible of which are generally slowly reproducing, large vertebrates with small populations. Here we will first focus on introductions to two important evolutionary aspects of conservation biology: the units of conservation and inbreeding depression. Then, we will discuss studies in two organisms as illustrations of these and related principles’”an endangered fish species, the Gila topminnow, and desert bighorn sheep’”to illustrate some evolutionary aspects of conservation. In the discussion, we will mention some of the other evolutionary topics that are relevant to conservation biology.

Keywords:   Bilateral symmetry, Captive breeding programs, Effective population size, False negative, Genetic distance, Heterozygosity, Inbreeding, Kinked tail, Lethal equivalent

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .