Jump to ContentJump to Main Navigation
PaleolimnologyThe History and Evolution of Lake Systems$
Users without a subscription are not able to see the full content.

Andrew S. Cohen

Print publication date: 2003

Print ISBN-13: 9780195133530

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195133530.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 28 September 2021

Paleoecological Archives in Lake Deposits 2: Records from Important Groups

Paleoecological Archives in Lake Deposits 2: Records from Important Groups

(p.287) 11 Paleoecological Archives in Lake Deposits 2: Records from Important Groups

Andrew S. Cohen

Oxford University Press

The lacustrine fossil record comprises a mixture of endogenic fossils, such as cladocerans, derived from lakes, and exogenic fossils, such as insects or pollen, which are carried into lakes, by wind and water from surrounding areas. Our primary emphasis here will be on the endogenic fossil record of lakes; we will only briefly consider general aspects of the taphonomy and paleoecological significance of exogenic fossils for terrestrial plant and insect fossils. Information about lake fossils varies greatly between groups. Some taxa, such as diatoms, are virtual workhorses of the field, with numerous investigators, and established methods of sampling, analysis, and interpretation. At the other extreme are organisms such as copepods, which, despite their importance in lacustrine ecosystems, are so poorly fossilized that they are unlikely to ever play a major role in paleolimnology. In between these extremes lie the majority of lacustrine organisms. Many relatively common groups have great potential for paleoecological interpretation, but, for reasons of inadequate study, a lack of researchers, or difficulties in taxonomy, have thus far been little used by paleolimnologists. Major opportunities await new students in the field who are willing to take up the challenges of studying these clades. Despite their importance in lacustrine communities, cyanobacteria remain a relatively unexploited source of information for paleolimnology. Isolated cells have poor preservation potential, and fossil cyanobacterial cells are preserved in Late Quaternary lake muds primarily by their more resistant reproductive spores (akinetes), or occasionally by filaments. Planktonic cyanobacteria are only rarely recorded in older sediments. In contrast, benthic cyanobacterial communities are well represented in ancient lake beds by their constructional deposits, lithified algal mats, stromatolites, and thrombolites. Although their body fossils have been used only rarely to solve paleolimnological problems, planktonic cyanobacteria have great potential for this purpose, given their obvious importance in many lacustrine communities. Relatively resistant akinetes might be very useful for understanding changes in plankton communities, especially in cases where better- studied siliceous microfossils (diatoms and chrysophytes) are not well preserved, for example, in very alkaline lakes. However, almost nothing is known of the taphonomic biases that control the planktonic cyanobacterial fossil record.

Keywords:   Ablabesmyia, Bedrock, Calcite, Daphniidae, Epiphytic organisms, Filter feeders, Geomorphology

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .