Jump to ContentJump to Main Navigation
Ecology of the Shortgrass SteppeA Long-Term Perspective$
Users without a subscription are not able to see the full content.

W. K. Lauenroth and I. C. Burke

Print publication date: 2008

Print ISBN-13: 9780195135824

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195135824.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 23 June 2021

Climate of the Shortgrass Steppe

Climate of the Shortgrass Steppe

Chapter:
(p.14) 2 Climate of the Shortgrass Steppe
Source:
Title Page
Author(s):

Roger A. Pielke

Nolan J. Doesken

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195135824.003.0006

The climate of a region involves the short- and long-term interaction among the atmospheric, hydrologic, ecologic, oceanographic, and cryospheric components of the earth’s environmental system (Hayden, 1998; Pielke, 1998, 20 01a,b). These interactions occur across a ll spatial and temporal scales, from turbulence generated by diurnal cycles at a landscape scale, to globalscale circulation. The establishment of particular ecosystem types is associated with a nonlinear feedback between the atmosphere and the underlying vegetation (Pielke a nd Vidale, 1995). Wang a nd E ltahir (20 0 0) and Claussen (1998) have demonstrated that vegetation patterning cannot be accurately simulated in a model unless vegetation–atmosphere feedbacks are included. In this chapter we summarize the climate system of the shortgrass steppe. This is a region of large seasonal contrasts, and of interannual and longer term variability. It is also a region that has undergone major human impacts during the past 150 years. We present both average conditions and examples of extreme events in the shortgrass steppe to illustrate the variable climate of this interesting ecosystem. Geographic factors play a large role in determining the climatic characteristics of the shortgrass steppe (Lauenroth and Burke, 1995; Lauenroth and Milchunas, 1992; Lauenroth et al., 1999). Key factors for this region include its mid-latitude position, its relatively high elevations, its interior continental location, and its proximity to the Rocky Mountains, a substantial north–south-oriented mountain barrier immediately to the west. Air masses affecting the region consist of continental polar air from the north, humid continental air masses from the east, humid subtropical air masses from the southeast and south, and Paci8 c maritime air masses from the west. The latter can be signi8 cantly modi8 ed as they cross a series of mountain ranges and interior dry regions before reaching the shortgrass steppe region. Each of these geographic and atmospheric features contributes to the climate of the region. Latitude determines day length and sun angle, and, hence, solar insolation. This, in turn, greatly affects air temperature. Upper level westerly winds increase over the mid-latitudes in the fall and winter in response to strengthening north–south temperature gradients in the atmosphere. Paci8 c air masses are carried eastward over the Rocky Mountains, depositing considerable cool-season precipitation in the mountains, but rarely on the shortgrass steppe.

Keywords:   Arctic air, Blizzards, Convection, Drought, Elevation, Hail, Latitude, Multidecadal drought, Rain shadow, Snowfall

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .