Jump to ContentJump to Main Navigation
Applied Stochastic Hydrogeology$
Users without a subscription are not able to see the full content.

Yoram Rubin

Print publication date: 2003

Print ISBN-13: 9780195138047

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195138047.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 07 December 2021

Moments of the Flow Variables, Part II : The Effective Conductivity

Moments of the Flow Variables, Part II : The Effective Conductivity

Chapter:
5 (p.121) Moments of the Flow Variables, Part II : The Effective Conductivity
Source:
Applied Stochastic Hydrogeology
Author(s):

Yoram Rubin

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195138047.003.0010

Many applications require primary information such as average fluxes as a prelude to more complex calculations. In water balance calculations one may be interested only in the average fluxes. For both cases the concept of effective conductivity is useful. The effective hydraulic conductivity is defined by where the angled brackets denote the expected value operator. The local flux fluctuation is defined by the difference qi(x) — (qi(x)). Its statistical properties as well as those of the velocity will be investigated in chapter 6. To qualify as an effective property in the strict physical sense, Kef must be a function of the aquifer’s material properties and not be influenced by flow conditions such as the head gradient and boundary conditions (Landauer, 1978). Our goal in this chapter is to explore the concept of the effective conductivity Kef and to relate it to the medium’s properties under as general conditions as possible. Additionally, we shall explore the conditions where this concept is irrelevant and applicable, the important issue being that Kef is defined in an ensemble sense, but for applications we need spatial averages. Several methods for deriving Kef will be described below. The general approach for defining Kef includes the following steps. First, H is defined as an SRF and is expressed with the aid of the flow equation in terms of the hydro-geological SRFs (conductivity, mostly) and the boundary conditions. The H SRF is then substituted in Darcy’s law and an expression in the form equivalent to (5.1) is sought. If and only if the coefficient in front of the mean head gradient is not a function of the flow conditions will it qualify as Kef. The derivation of the effective conductivity employs the flow equation. In steady-state incompressible flow, for example, Laplace’s equation is employed. Solutions derived under Laplace’s equation are applicable, under appropriate conditions, for other physical phenomena governed by the same mathematical model. For example, the electrical field in steady state is also described by Laplace’s equation.

Keywords:   Anisotropy, Bedding planes, Chalk River, Flow nonuniformity, Gas permeameter, Homogenization, Inclusion, Jacob's approximation, Length scale

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .