Jump to ContentJump to Main Navigation
Applied Stochastic Hydrogeology$
Users without a subscription are not able to see the full content.

Yoram Rubin

Print publication date: 2003

Print ISBN-13: 9780195138047

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195138047.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 26 July 2021

Introduction

Introduction

Chapter:
1 (p.3) Introduction
Source:
Applied Stochastic Hydrogeology
Author(s):

Yoram Rubin

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195138047.003.0006

Stochastic hydrogeology is the study of hydrogeology using physical and probabilistic concepts. It is an applied science because it is oriented toward applications. Its goal is to develop tools for analyzing measurements and observations taken over a sample region in space, and extract information which can then be used for evaluating and modeling the properties of physical processes taking place in this domain, and make risk-qualified predictions of their outcome. By invoking probabilistic concepts to deal with problems of physics, stochastic hydrogeology joins a well-established tradition followed in mining (Matheron, 1965; David, 1977; Journel and Huijbregts, 1978), turbulence (Kolmogorov, 1941; Batchelor, 1949), acoustics (Tatarski, 1961), atmospheric science (Lumley and Panofsky, 1964), composite materials and electrical engineering (Beran, 1968; Batchelor, 1974), and of course statistical mechanics. Stochastic hydrogeology broadens the scope of the deterministic approach to hydrogeology by considering the last as an end member to a wide spectrum of states of knowledge, stretching from deterministic knowledge at one end all the way to maximum uncertainty at the other, with a continuum of states, representing varying degrees of uncertainty in the hydrogeological processes, in between. It provides a formalism for addressing this continuum of states systematically. The departure from the confines of determinism is an important and intuitively appealing paradigm shift, representing the maturing of hydrogeology from an exploratory into an applied discipline. Deterministic knowledge of a site’s hydrogeology is a state we rarely, if ever, find ourselves in, although from a fundamental point of view there is no inherent element of chance in the hydrogeological processes. For example, we know that mass conservation is a deterministic concept, and we are also confident that Darcy’s law works under conditions which are fairly well understood. However, the application of these principles involves a fair amount of conjecture and speculation, and hence when dealing with real-life applications, determinism exists only in the fact that uncertainty and ambiguity are unavoidable, and might as well be studied and understood. The other end of the spectrum is where uncertainty is the largest. Generally speaking, two types of uncertainty exist: intrinsic variability and epistemic uncertainty.

Keywords:   Calibration, Flow nonuniformity, Instability, Length scale, Model selection, Nonuniqueness, Outcrop, Prior, Site characterization, Travel times

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .