Jump to ContentJump to Main Navigation
Biodiversity in DrylandsToward a Unified Framework$
Users without a subscription are not able to see the full content.

Moshe Shachak, Stewart T. A. Pickett, James R. Gosz, and Avi Perevolotski

Print publication date: 2005

Print ISBN-13: 9780195139853

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195139853.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 27 November 2021

(p.206) 12 Resource Partitioning and Biodiversity in Fractal Environments with Applications to Dryland Communities

(p.206) 12 Resource Partitioning and Biodiversity in Fractal Environments with Applications to Dryland Communities

Chapter:
(p.206) 12 Resource Partitioning and Biodiversity in Fractal Environments with Applications to Dryland Communities
Source:
Biodiversity in Drylands
Author(s):

Mark E. Ritchie

Han Olff

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195139853.003.0018

Arid and semiarid ecosystems (drylands) often contain a higher diversity of animals and plants than would be expected from their low productivity. High spatial heterogeneity of resources and physical habitats, exhibited at a wide range of spatial scales (Rundel 1996, Holling 1992, Peterson et al. 1998), may be a major factor explaining such high diversity. For example, at extremely small scales (<10 cm), branched plant material and various soil physical processes can create spatial niches for invertebrates, cyanobacteria, and other cryptogamic organisms (Lightfoot and Whitford 1991). At somewhat larger scales (<10 m), desert shrubs may aggregate water and organic material in “islands of fertility,” yielding a highly patchy heterogeneous distribution of resources (e.g., seeds, water) for other plants and animals (Gibbens and Beck 1988, Halvorson et al. 1997, chapter 13 this volume, chapter 11 this volume). At even larger scales (>100 m), soil erosion patterns create topographic variation that locally concentrates available water and nutrients, yielding a marked heterogeneity in the distribution of productivity across the landscape (Milne 1992). These heterogeneous distributions of physical environments, biotic material, and resources are likely to have strong effects on biodiversity. Ecologists have long associated greater spatial heterogeneity with higher species diversity (MacArthur 1964; Brown 1981; May 1988). Within a particular physical environment (habitat), this association exists presumably because collections of species that use similar resources, or “guilds,” can coexist whenever they can more finely divide up space and different-sized resource “packages” (Hutchinson and MacArthur 1959, Brown 1981, 1995, Morse et al. 1985, Peterson et al. 1998). The partitioning of space and different resource patches may be constrained by the different body sizes of species within guilds (Hutchinson and MacArthur 1959, Morse et al. 1985, Belovsky 1986, 1997, Brown 1995, Siemann et al. 1996). However, the mechanism by which body size and spatial heterogeneity of habitats and resources determine species diversity remains unclear (May 1988, Brown 1995, Siemann et al. 1996, Belovsky 1997). Resource partitioning and spatial heterogeneity therefore may strongly influence diversity in drylands, where, for example, well-known guilds of granivorous vertebrates and invertebrates are structured by competition for different sizes of seeds and seed patches (Brown et al. 1979, Davidson et al. 1980, 1985).

Keywords:   Body size, Granivorous ants, Heteromyidae, Lacunarity, Niche, Optimal foraging principals, determining, Power law, Scaling law

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .