Jump to ContentJump to Main Navigation
Biodiversity in DrylandsToward a Unified Framework$
Users without a subscription are not able to see the full content.

Moshe Shachak, Stewart T. A. Pickett, James R. Gosz, and Avi Perevolotski

Print publication date: 2005

Print ISBN-13: 9780195139853

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195139853.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 18 January 2022

(p.220) 13 Unified Framework II Ecosystem Processes: A Link Between Species and Landscape Diversity

(p.220) 13 Unified Framework II Ecosystem Processes: A Link Between Species and Landscape Diversity

(p.220) 13 Unified Framework II Ecosystem Processes: A Link Between Species and Landscape Diversity
Biodiversity in Drylands

Robert Waide

Peter M. Groffman

Oxford University Press

The discipline of ecology can be subdivided into several subdisciplines, including community, ecosystem, and landscape ecology. While all the subdisciplines are important to the study of biodiversity, there is great variation in the extent to which their contributions have been analyzed. For example, the role of community ecology in biodiversity studies is well established. In community ecology, the entities of study are species that differ in their properties and generate a web of interactions that, in turn, organize the species into a community. Similar to community ecology, the contribution of landscape ecology to biodiversity is apparent. The entities of study, definable “patches,” are tangible. They differ in their properties and generate a web of interactions that organize the patches into a landscape mosaic. In contrast to community and landscape ecology, the role of ecosystem ecology in biodiversity is less apparent. In ecosystem ecology, it often is not clear what the entities are, and how they are organized. To the extent that ecosystem ecology focuses on energy flow and nutrient cycling, we can define fundamental entities as compartments and vectors in models that depict the flows of water, energy, and nutrients through communities. If we apply diversity criteria to these entities, we can use the term ecosystem diversity to refer to the number of compartments and vectors, the differences among them in type and size, and their organization in promoting energy flow or nutrient cycling. To our knowledge, ecosystem scientists have not yet developed criteria for ecosystem diversity similar to those used for species and landscape diversity. There has been some use of the term “ecosystem diversity” to refer to a diversity of ecosystems, implying a variety of habitats, landscapes, or biomes. As discussed above, we suggest that to define the role of ecosystem ecology in biodiversity studies, the approach should be to study the relationships among species, landscape, and ecosystem diversities (chapters 1 and 13). However, since the concept of ecosystem diversity awaits further development, we adopt a different approach for understanding the role of ecosystem science in biodiversity studies. In this chapter, we examine relationships among ecosystem processes, species diversity, and landscape diversity.

Keywords:   Assemblage dynamics, Climate, Ecosystem resilience, Forests, Human-related disturbance, Hydrology, Land Use, Mineralization, Nutrient accumulation, Organic matter dynamics

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .