Jump to ContentJump to Main Navigation
All About FibromyalgiaA Guide for Patients and their Families$
Users without a subscription are not able to see the full content.

Daniel J. Wallace and Janice Brock Wallace

Print publication date: 2002

Print ISBN-13: 9780195147537

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195147537.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 13 June 2021

Why and How Do We Hurt?

Why and How Do We Hurt?

4 Why and How Do We Hurt?
All About Fibromyalgia

Daniel J. Wallace

Janice Brock Wallace

Oxford University Press

A fibromyalgia patient frequently complains of pain. The pain of fibromyalgia is different from that of a headache, stomach cramp, toothache, or swollen joint. It has been described as a type of stiffness or aching, often associated with spasm. Unlike the other pains mentioned above, fibromyalgia pain responds poorly to aspirin, acetaminophen (Tylenol), or ibuprofen (Advil, Motrin). In fact, studies have suggested that even narcotics such as morphine are minimally beneficial in ameliorating fibromyalgia pain. Why is it that fibromyalgia patients can take codeine, Darvon, Vicodin, or even Demerol for musculoskeletal aches and have only a slight response? What produces “pain without purpose”? In this chapter, we’ll explore what makes fibromyalgia a pain amplification syndrome. Why does the patient hurt in places where there was often no injury and all laboratory tests are normal? What creates what doctors call allodynia, or a clinical situation that results in pain from a stimulus (such as light touch) that normally should not be painful? Fibromyalgia is a form of chronic, widespread allodynia, as well as sustained hyperalgesia, or greater sensitivity than would be expected to an adverse stimulus. The nervous system consists of several components. The brain and spinal cord comprise the central nervous system. Nerves leaving the spinal cord that tell us to move our arms or legs are part of the “motor” aspects of the peripheral nervous system. Additionally, all sorts of information about touch, taste, chemicals, and pressure are relayed through “sensory” pathways back to the spinal cord, where they are processed and sent up to the brain for a response. The autonomic nervous system consists of specialized peripheral nerves. Fibromyalgia is a disorder characterized by an inappropriate neuromuscular reaction that leads to chronic pain. Patients with fibromyalgia usually react normally to acute pain. Our current concepts of the way the body responds to chronic painful stimuli stem from the gate theory, first proposed by Ronald Melzack and Patrick Wall in 1965. Nerve “wires” go from the periphery to the dorsal horn of the spinal cord. These wires are modulated by feedback loops within the nervous system.

Keywords:   acetaminophen, bradykinins, calcium channels, dynorphin, endorphins, functional bowel syndrome, gate theory, histamine, ketamine, limbic system, magnesium

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .