Jump to ContentJump to Main Navigation
Alaska's Changing Boreal Forest$
Users without a subscription are not able to see the full content.

F. Stuart Chapin, Mark W. Oswood, Keith van Cleve, Leslie A. Viereck, and David L. Verbyla

Print publication date: 2006

Print ISBN-13: 9780195154313

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195154313.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 04 March 2021

Watershed Hydrology and Chemistry in the Alaskan Boreal Forest: The Central Role of Permafrost

Watershed Hydrology and Chemistry in the Alaskan Boreal Forest: The Central Role of Permafrost

16 Watershed Hydrology and Chemistry in the Alaskan Boreal Forest: The Central Role of Permafrost
Alaska's Changing Boreal Forest

Larry D. Hinzman

Kevin C. Petrone

Oxford University Press

Hydrological processes exert strong control over biological and climatic processes in every ecosystem. They are particularly important in the boreal zone, where the average annual temperatures of the air and soil are relatively near the phase-change temperature of water (Chapter 4). Boreal hydrology is strongly controlled by processes related to freezing and thawing, particularly the presence or absence of permafrost. Flow in watersheds underlain by extensive permafrost is limited to the near-surface active layer and to small springs that connect the surface with the subpermafrost groundwater. Ice-rich permafrost, near the soil surface, impedes infiltration, resulting in soils that vary in moisture content from wet to saturated. Interior Alaska has a continental climate with relatively low precipitation (Chapter 4). Soils are typically aeolian or alluvial (Chapter 3). Consequently, in the absence of permafrost, infiltration is relatively high, yielding dry surface soils. In this way, discontinuous permafrost distribution magnifies the differences in soil moisture that might normally occur along topographic gradients. Hydrological processes in the boreal forest are unique due to highly organic soils with a porous organic mat on the surface, short thaw season, and warm summer and cold winter temperatures. The surface organic layer tends to be much thicker on north-facing slopes and in valley bottoms than on south-facing slopes and ridges, reflecting primarily the distribution of permafrost. Soils are cooler and wetter above permafrost, which retards decomposition, resulting in organic matter accumulation (Chapter 15). The markedly different material properties of the soil layers also influence hydrology. The highly porous near-surface soils allow rapid infiltration and, on hillsides, downslope drainage. The organic layer also has a relatively low thermal conductivity, resulting in slow thaw below thick organic layers. The thick organic layer limits the depth of thaw each summer to about 50–100 cm above permafrost (i.e., the active layer). As the active layer thaws, the hydraulic properties change. For example, the moisture-holding capacity increases, and additional subsurface layers become available for lateral flow. The mosaic of Alaskan vegetation depends not only on disturbance history (Chapter 7) but also on hydrology (Chapter 6).

Keywords:   active layer, basalt, chloride, eolian deposits, flow path, glaciology, infiltration, latent heat, metamorphic rocks, nitrate

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .