Jump to ContentJump to Main Navigation
Alaska's Changing Boreal Forest$
Users without a subscription are not able to see the full content.

F. Stuart Chapin, Mark W. Oswood, Keith Van Cleve, Leslie A. Viereck, and David L. Verbyla

Print publication date: 2006

Print ISBN-13: 9780195154313

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195154313.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 04 December 2021

Regional Overview of Interior Alaska

Regional Overview of Interior Alaska

Chapter:
(p.12) 2 Regional Overview of Interior Alaska
Source:
Alaska's Changing Boreal Forest
Author(s):

David Stone

David L. Verbyla

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195154313.003.0006

From continental macroclimate to microalluvial salt crusts, geology is a dominant factor that influences patterns and processes in the Alaskan boreal forest. In this chapter, we outline important geologic processes as a foundation for subsequent chapters that discuss the soil, hydrology, climate, and biota of the Alaskan boreal forest. We conclude the chapter with a discussion of interior Alaska from a regional perspective. Alaska can be divided into four major physiographic regions. The arctic coastal plain is part of the Interior Plains physiographic division of North America, analogous to the great plains east of the Rocky Mountains. The arctic coastal plain is predominantly alluvium underlaid by hundreds of meters of permafrost, resulting in many thaw lakes and ice wedges. South of the arctic coastal plain lies the Northern Cordillera, an extension of the Rocky Mountain system dominated by the Arctic Foothills, Brooks Range, Baird Mountains, and Delong Mountains. These mountains were glaciated during the Pleistocene. South of the Brooks Range lies interior Alaska, which is an intermontane plateau region analogous to the Great Basin/Colorado Plateau regions. This extensive region is characterized by wide alluvium-covered lowlands such as the Yukon Flats, Tanana Valley, and Yukon Delta, as well as moderate upland hills, domes, and mountains. Largely unglaciated, this region served as a refugium for biota during glacial periods. With the Northern and Southern Cordilleras acting as barriers, the major rivers of this region have long, meandering paths to the Bering Sea. The Southern Cordillera is composed of two mountain ranges: the Alaska Range to the north and the Kenai/Chugach/Wrangell-St. Elias Mountains to the south. The lowland belt between these mountains includes the Susitna and Copper River lowlands. The entire Southern Cordillera was glaciated during the Pleistocene and today has extensive mountain glaciers. Much of Alaska is made up of multiple geologic fragments that have been rafted together by the movements of the major plates called tectonic terranes (Thorson 1986, Connor and O’Haire 1988). Plate-tectonic theory explains such observations as the changing distribution of fossils with geologic time, the deep Aleutian Trench, high Alaskan mountain barriers, and mountain glaciers.

Keywords:   earthquakes, glaciation, interior Alaska, loess, physiographic regions, refugium during glaciation, sand dunes, transportation network

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .