Jump to ContentJump to Main Navigation
Computational Complexity and Statistical Physics$
Users without a subscription are not able to see the full content.

Allon Percus, Gabriel Istrate, and Cristopher Moore

Print publication date: 2005

Print ISBN-13: 9780195177374

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195177374.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 04 December 2021

Phase Transitions for Quantum Search Algorithms

Phase Transitions for Quantum Search Algorithms

Chapter:
Chapter 10 Phase Transitions for Quantum Search Algorithms
Source:
Computational Complexity and Statistical Physics
Author(s):

Tad Hogg

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195177374.003.0019

Phase transitions have long been studied empirically in various combinatorial searches and theoretically in simplified models [91, 264, 301, 490]. The analogy with statistical physics [397], explored throughout this volume, shows how the many local choices made during search relate to global properties such as the resulting search cost. These studies have led to a better understanding of typical search behaviors [514] and improved search methods [195, 247, 261, 432, 433]. Among the current research questions in this field are the range of algorithms exhibiting the transition behavior and the algorithm-independent problem properties associated with the difficult instances concentrated near the transition. Towards this end, the present chapter examines quantum computer [123, 126, 158, 486] algorithms for nondeterministic polynomial (NP) combinatorial search problems [191]. As with many conventional methods, they exhibit the easy-hard-easy pattern of computational cost as the degree of constraint in the problems varies. We describe how properties of the search space affect the algorithms and identify an additional structural property, the energy gap, motivated by one quantum algorithm but applicable to a variety of techniques, both quantum and classical. Thus, the study of quantum search algorithms not only extends the range of algorithms exhibiting phase transitions, but also helps identify underlying structural properties. Specifically, the next two sections describe a class of hard search problems and the form of quantum search algorithms proposed to date. The remainder of the chapter presents algorithm behaviors, relevant problem structure, arid an approximate asymptotic analysis of their cost scaling. The final section discusses various open issues in designing and evaluating quantum algorithms, and relating their behavior to problem structure. The k-satisfiability (k -SAT) problem, as discussed earlier in this volume, consists of n Boolean variables and m clauses. A clause is a logical OR of k variables, each of which may be negated. A solution is an assignment, that is, a value for each variable, TRUE or FALSE, satisfying all the clauses. An assignment is said to conflict with any clause it does not satisfy.

Keywords:   Boolean variables, adiabatic limit, backtracking, cost phase function, minimum gap, problem structure, scaling behavior, unstructured search

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .