Jump to ContentJump to Main Navigation
The Polysiloxanes$
Users without a subscription are not able to see the full content.

James E. Mark, Dale W. Schaefer, and Gui Lin

Print publication date: 2015

Print ISBN-13: 9780195181739

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195181739.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 20 June 2021

Preparation, Analysis, and Degradation

Preparation, Analysis, and Degradation

Chapter:
CHAPTER 2 Preparation, Analysis, and Degradation
Source:
Title Pages
Author(s):

James E. Mark

Dale W. Schaefer

Gui Lin

Publisher:
Oxford University Press
DOI:10.1093/oso/9780195181739.003.0004

Elemental silicon on which the entire technology is based is typically obtained by reduction of the mineral silica with carbon at high temperatures: . . . SiO2 + 2C → Si 2CO (2.1) . . . The silicon is then converted directly to tetrachlorosilane by the reaction . . . Si + 2Cl2 → SiCl4 (2.2) . . Tetrachlorosilane can be used to form an organosilane by the Grignard Reaction . . . SiCl4 + 2 RMgX → R2SiCl2 + 2 MgClX (2.3). . . This relatively complicatreaction has been replaced by the so-called Direct Process or Rochow Process, which starts from elemental silicon as is illustrated by the reaction . . . Si + 2 RCl → R2SiCl2 (2.4) . . . This process also yields RSiCl3 and R3SiCl, which­­ can be removed by distillation. Compounds of formula R2SiCl2 are extremely important as intermediates to a variety of substances having both organic and inorganic character. Hydrolysis gives dihydroxy structures, which can condense to give the basic [–SiR2O–] repeat unit. The nature of the product obtained depends greatly on the reaction conditions. Basic catalysts and higher temperatures favor higher molecular weight linear polymers. Acidic catalysts tend to produce cyclic small molecules or low molecular weight polymers. The hydrolysis approach to polysiloxane synthesis has been largely replaced by ring-opening polymerization of organosilicon cyclic trimers and tetramers, with ionic initiation. These cyclic monomers are produced by the hydrolysis of dimethyldichlorosilane. Under the right conditions, at least 50 wt % of the products are cyclic oligomers. The desired cyclic species are separated from the mixture for use in ring-opening polymerizations such as those described in the following section. In addition, “click” chemistry has been developed for new synthesis techniques in general, and polymerizations in particular. These approaches have been used to prepare polysiloxane elastomers and polydimethylsiloxane (PDMS) copolymers that can function as thermoplastic elastomers. New synthetic strategies for structured silicones, based on B(C6F5)3 have also been developed. Another new approach involves enzymes, such as the lipase enzymatically catalyzed synthesis of silicone aromatic polyesters and silicone aromatic polyamides.

Keywords:   Biomedical, Cellulose acetate, Degradation, End blocker, Fluorescence, Gaussian distribution, Hexamethylcyclotrisiloxane, Laser irradiation, Mass spectrometry, Neutron scattering

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .