Jump to ContentJump to Main Navigation
Chemistry in Quantitative LanguageFundamentals of General Chemistry Calculations$
Users without a subscription are not able to see the full content.

Christopher O. Oriakhi

Print publication date: 2009

Print ISBN-13: 9780195367997

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195367997.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 18 October 2021

Oxidation and Reduction Reactions

Oxidation and Reduction Reactions

22 (p.379) Oxidation and Reduction Reactions
Chemistry in Quantitative Language

Christopher O. Oriakhi

Oxford University Press

Oxidation-reduction reactions, or redox reactions, occur in many chemical and biochemical systems. The process involves the complete or partial transfer of electrons from one atom to another. Oxidation and reduction processes are complementary. For every oxidation, there is always a corresponding reduction process. This is because for a substance to gain electrons in a chemical reaction, another substance must be losing these electrons. Oxidation is defined as a process by which an atom or ion loses electrons. This can occur in several ways: • Addition of oxygen or other electronegative elements to a substance:. . . 2 Mg(s)+O2(g) → 2 MgO(s) . . .2 Mg(s)+O2(g) → MgCl2 (s). . . • Removal of hydrogen or other electropositive elements from a substance: . . . H2S(g)+Cl2(g) → 2 HCl(g)+S(s) . . .Here, H2S is oxidized. • The direct removal of electrons from a substance: . . . 2 FeCl2 (s)+Cl2(g) → 2 FeCl3 (s) . . . Fe2+ → Fe3+ +e− . . . Reduction is defined as the process by which an atom or ion gains electrons. This can occur in the following ways: • Removal of oxygen or other electronegative elements from a substance: . . . MgO(s)+H2(g) → Mg(s)+H2O(g). . . • Addition of hydrogen or other electropositive elements to a substance: . . . H2(g)+Br2(g) → 2 HBr(g). . . 2 Na(s)+Cl2(g) → 2 NaCl(s). . . Here, chlorine (Cl2) is reduced. • The addition of electrons to a substance: . . . Fe3+ +e− → Fe2+ . . . Oxidation number or oxidation state is a number assigned to the atoms in a substance to describe their relative state of oxidation or reduction. These numbers are used to keep track of electron transfer in chemical reactions. Some general rules are used to determine the oxidation number of an atom in free or combined state. 1. Any atom in an uncombined (or free) element (e.g., N2, Cl2, S8, O2, O3, and P4) has an oxidation number of zero. 2. Hydrogen has an oxidation number of +1 except in metal hydrides (e.g., NaH, MgH2) where it is −1. 3. Oxygen has an oxidation number of −2 in all compounds except in peroxides (e.g., H2O2, Na2O2) where it is –1.

Keywords:   disproportionation reactions, half-cell reactions, half-equations, oxidation, oxidizing agent, reducing agent, reduction

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .