Jump to ContentJump to Main Navigation
Bioseparations Science and Engineering$
Users without a subscription are not able to see the full content.

Roger G. Harrison, Paul W. Todd, Scott R. Rudge, and Demetri P. Petrides

Print publication date: 2015

Print ISBN-13: 9780195391817

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780195391817.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 26 October 2021



(p.407) 11 Drying
Bioseparations Science and Engineering

Roger G. Harrison

Paul W. Todd

Scott R. Rudge

Demetri P. Petrides

Oxford University Press

The last step in the separation process for a biological product is usually drying, which is the process of thermally removing volatile substances (often water) to yield a solid. In the step preceding drying, the desired product is generally in an aqueous solution and at the desired final level of purity. The most common reason for drying a biological product is that it is susceptible to chemical (e.g., deamidation or oxidation) and/or physical (e.g., aggregation and precipitation) degradation during storage in a liquid formulation. Another common reason for drying is for convenience in the final use of the product. For example, it is often desirable that pharmaceutical drugs be in tablet form. Additionally, drying may be necessary to remove undesirable volatile substances. Also, although many bioproducts are stable when frozen, it is more economical and convenient to store them in dry form rather than frozen. Drying is now an established unit operation in the process industries. However, because most biological products are thermally labile, only those drying processes that minimize or eliminate thermal product degradation are actually used to dry biological products. This chapter focuses on the types of dryer that have generally found the greatest use in the drying of biological products: vacuum-shelf dryers, batch vacuum rotary dryers, freeze dryers, and spray dryers [1]. The principles discussed, however, will apply to other types of dryers as well. We begin with the fundamental principles of drying, followed by a description of the types of dryer most used for biological products. Then we present scale-up and design methods for these dryers. After completing this chapter, the reader should be able to do the following: • Do drying calculations involving relative humidity using the psychrometric moisture chart and the equilibrium moisture curve for the material being dried. • Calculate the relative amounts of bound and unbound water in wet solids before drying. • Model heat transfer in conductive drying and calculate conductive drying times. • Interpret drying rate curves. • Calculate convective drying times of nonporous solids based on mass transfer.

Keywords:   bound water, drying, enthalpy, humidity, latent heat, relative humidity, specific heat

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .