Jump to ContentJump to Main Navigation
Catastrophes and Lesser CalamitiesThe causes of mass extinctions$
Users without a subscription are not able to see the full content.

Tony Hallam

Print publication date: 2004

Print ISBN-13: 9780198524977

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198524977.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 24 October 2021

Evidence for catastrophic organic changes in the geological record

Evidence for catastrophic organic changes in the geological record

(p.19) 3 Evidence for catastrophic organic changes in the geological record
Catastrophes and Lesser Calamities

Tony Hallam

Oxford University Press

If asked what they understood by the word ‘catastrophe’, most people would probably agree that it was something big, bad, and sudden, and involved damage to organisms. In the natural world today, perhaps the most striking catastrophes result from major earthquakes, in which thousands of people can be killed within minutes. Going back through human history, we allow for greater stretches of time. Thus, in the middle of the fourteenth century, over a period of five years, an estimated one-third of the European population died directly as a result of catching the plague: the ‘Black Death’. By any reckoning this ranks as a catastrophe. It had a dramatic effect on European society for many years. When we extend our consideration to geological time, in which it is routine to deal with changes taking place over millions of years, events lasting only a few thousand years may be regarded as catastrophic if the contrast with the ‘background’ is sharp enough. Various definitions have been proposed for a mass extinction. A conveniently concise if imprecise one that I favour is that it is the extinction of a significant proportion of the world’s living animal and plant life (the biota) in a geologically insignificant period of time. The imprecision about the extent of an extinction can be dealt with fairly satisfactorily in particular instances by giving percentages of fossil families, genera, or species, but the imprecision about time is more difficult to deal with. An important question about mass extinctions is to assess how catastrophic they were, so we also require a definition of ‘catastrophe’ in this context. One thought-provoking attempt at such a definition is that a catastrophe is a perturbation of the biosphere that appears to be instantaneous when viewed at the level of detail that can be resolved in the geological record. At this point more needs to be said about the nature of the geological record. The material that geologists and palaeontologists deal with occurs in the layered successions of sedimentary rocks, mainly sandstones, shales, and limestones, that can clearly be observed in good rock exposures, either natural ones, as in coastal cliffs or mountains, or artificial ones, as in quarries or borehole cores.

Keywords:   Algae, Biostratigraphy, Catastrophe, Devonian, Eocene, France, Graptolites, Holocene, Jurassic, Kainozoic

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .