Jump to ContentJump to Main Navigation
Catastrophes and Lesser CalamitiesThe causes of mass extinctions$
Users without a subscription are not able to see the full content.

Tony Hallam

Print publication date: 2004

Print ISBN-13: 9780198524977

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198524977.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 26 October 2021

Oxygen deficiency in the oceans

Oxygen deficiency in the oceans

(p.91) 6 Oxygen deficiency in the oceans
Catastrophes and Lesser Calamities

Tony Hallam

Oxford University Press

We are all very much aware that oxygen deprivation leads quickly to death, and this is true not just of our own species but of virtually the whole organic world. There are indeed very few exceptions, such as the anaerobic bacteria that derive their energy from reducing sulphates to sulphides, which flourish in the absence of free oxygen. (As these organisms do not leave a fossil record they provide no clues for the geological detective.) Today the atmosphere never lacks oxygen, except in artificially enclosed conditions, but oxygen deficiency can be lethal in certain marine environments and thus must be explored as a possible factor in causing mass extinctions. Mixing with atmospheric winds ensures that the surface waters of the ocean, down to the greatest depth attained by storm waves, always contain plenty of oxygen. Most of the oceans and marginal seas today contain oxygen throughout their depth, but in certain circumstances an oxygen deficiency can occur in the lower parts of the ocean. In parts of some tropical oceans, for instance, the oxygen content decreases with depth until near the ocean bottom, where under the influence of currents driven by cold water from around Antarctica, the oxygen content increases again. This gives rise to a zone in the ocean known as the oxygen minimum zone. The rapid deep ocean circulation is today driven ultimately by the presence of polar ice on Antarctica, which is the main cause of the strong sea-water temperature gradient from the tropics to the poles. For long periods in the Earth’s history substantial polar ice caps were lacking, and many geologists believe that during those periods latitudinal ocean currents were more sluggish. The deep ocean must then have been largely deficient in oxygen, if not completely lacking in oxygen (anoxic). (Sea water with a content of one or more millilitres of oxygen per litre of water is called oxic; 0.1 ml or less is anoxic; and for any intermediate value the water is dysoxic.) Certain parts of the sea bed where the overlying water is deficient in oxygen are enriched in organic matter derived principally from the plankton.

Keywords:   Ammonites, Brachiopods, Canada, Devonian, Frasnian-Famennian boundary, Gondwana, Jurassic, Pakistan

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .