Free-Energy Calculations
Free-Energy Calculations
Free energy is of central importance for understanding the properties of physical systems at finite temperatures. While in the zero temperature limit the system should evolve to a state of minimum energy (Section 2.3), this is not necessarily the case at a finite temperature. When an open system exchanges energy with the outside world (a thermostat) and maintains a constant temperature, its evolution proceeds towards minimizing its free energy. For example, a crystal turns into a liquid when the temperature exceeds its melting temperature precisely because the free energy of the liquid state becomes lower than that of the crystalline state. In the context of dislocation simulations, free energy is all important when one has to decide which of the possible core configurations the dislocation is likely to adopt at a given temperature.
Keywords: Configurational space, Entropy, Free energy, Harmonic approximation, Heat dissipation, Hessian matrix, Potential energy landscape, Thermal equilibrium, Vacancy
Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.
Please, subscribe or login to access full text content.
If you think you should have access to this title, please contact your librarian.
To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .