Jump to ContentJump to Main Navigation
Computer Simulations of Dislocations$
Users without a subscription are not able to see the full content.

Vasily Bulatov and Wei Cai

Print publication date: 2006

Print ISBN-13: 9780198526148

Published to Oxford Scholarship Online: November 2020

DOI: 10.1093/oso/9780198526148.001.0001

Show Summary Details
Page of

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (oxford.universitypressscholarship.com). (c) Copyright Oxford University Press, 2021. All Rights Reserved. An individual user may print out a PDF of a single chapter of a monograph in OSO for personal use. date: 21 October 2021

Introduction To Crystal Dislocations

Introduction To Crystal Dislocations

1 (p.1) Introduction To Crystal Dislocations
Computer Simulations of Dislocations

Vasily V Bulatov

Wei Cai

Oxford University Press

Dislocations first appeared as an abstract mathematical concept. In the late 19th century, Italian mathematician Vito Volterra examined mathematical properties of singularities produced by cutting and shifting matter in a continuous solid body [1]. As happened to some other mathematical concepts, dislocations could have remained a curious product of mathematical imagination known only to a handful of devoted mathematicians. In 1934, however, three scientists, Taylor, Polanyi and Orowan, independently proposed that dislocations may be responsible for a crystal’s ability to deform plastically [2, 3, 4]. While successfully explaining most of the puzzling phenomenology of crystal plasticity, crystal dislocations still remained mostly a beautiful hypothesis until the late 1950s when first sightings of them were reported in transmission electron microscopy (TEM) experiments [5]. Since then, the ubiquity and importance of dislocations for crystal plasticity and numerous other aspects of material behavior have been regarded as firmly established as, say, the role of DNA in promulgating life. Dislocations define a great many properties of crystalline materials. In addition to a crystal’s ability to yield and flow under stress, dislocations also control other mechanical behaviors such as creep and fatigue, ductility and brittleness, indentation hardness and friction. Furthermore, dislocations affect how a crystal grows from solution, how a nuclear reactor wall material is damaged by radiation, and whether or not a semiconductor chip in an electronic device will function properly. It can take an entire book just to describe the various roles dislocations play in materials behavior. However, the focus of this book is on the various computational models that have been developed to study dislocations. This chapter is an introduction to the basics of dislocations, setting the stage for subsequent discussions of computational models and associated numerical issues. Like any other crystal defect, dislocations are best defined with respect to the host crystal structure. We begin our discussion by presenting in Section 1.1 the basic elements and common terminology used to describe perfect crystal structures. Section 1.2 introduces the dislocation as a defect in the crystal lattice and discusses some of its essential properties. Section 1.3 discusses forces on dislocations and atomistic mechanisms for dislocation motion.

Keywords:   Burgers circuit, Crystal defect, Dislocation, Glide plane, Interstitial, Miller indices notation, Partial dislocations, Stress tensor, Vacancy, Yield

Oxford Scholarship Online requires a subscription or purchase to access the full text of books within the service. Public users can however freely search the site and view the abstracts and keywords for each book and chapter.

Please, subscribe or login to access full text content.

If you think you should have access to this title, please contact your librarian.

To troubleshoot, please check our FAQs , and if you can't find the answer there, please contact us .